
Solving Pasur Using GPU-Accelerated Counterfactual

Regret Minimization*

Sina Baghal
siinabaghal@gmail.com

August 7, 2025

Abstract

Pasur is a fishing card game played over six rounds and is played similarly
to games such as Cassino and Scopa, and Bastra 1. This paper introduces a
CUDA-accelerated computational framework for simulating Pasur, emphasizing
efficient memory management. We use our framework to compute near-Nash
equilibria via Counterfactual Regret Minimization (CFR), a well-known algo-
rithm for solving large imperfect-information games.

Solving Pasur presents unique challenges due to its intricate rules and the
large size of its game tree. We handle rule complexity using PyTorch CUDA
tensors and to address the memory-intensive nature of the game, we decom-
pose the game tree into two key components: (1) actual game states, and (2)
inherited scores from previous rounds. We construct the Full Game Tree by
pairing card states with accumulated scores in the Unfolding Process. This
design reduces memory overhead by storing only essential strategy values and
node connections. To further manage computational complexity, we apply a
round-by-round backward training strategy, starting from the final round and
recursively propagating average utilities to earlier stages. Our approach con-
structs the complete game tree, which on average consists of over 109 nodes.
We provide detailed implementation snippets to illustrate the structure and
training logic of our framework and the CFR algorithm.

After computing a near-Nash equilibrium strategy, we train a tree-based
model to predict these strategies for use during gameplay. We then estimate
the fair value of each deck through large-scale self-play between equilibrium
strategies by simulating, for instance, 10,000 games per matchup, executed in
parallel using GPU acceleration. Our analysis reveals that the distribution of
high-value cards heavily influences match outcomes, accounting for much of the
variation in deck fairness. Finally, each trained model is lightweight, making it
feasible to be used as a real-time AI agent for Pasur.

Similar frameworks can be extended to other reinforcement learning algo-
rithms in settings where the action tree naturally decomposes into multiple
rounds such as turn-based strategy games or sequential trading decisions in
financial markets.

*This preprint is available at URL: https://sinabaghal.github.io/files/SolvePasurviaCFR.pdf
1Wikipedia: Pasur (card game)

1

https://sinabaghal.github.io/files/SolvePasurviaCFR.pdf
https://en.wikipedia.org/wiki/Pasur_(card_game)

1 Introduction and Background

Imperfect-information games pose significant challenges due to hidden information
and strategic uncertainty. Counterfactual Regret Minimization (CFR) has emerged
as a powerful algorithmic framework for approximating Nash equilibria in such set-
tings, notably achieving success in poker variants and other complex card games
[7, 3, 1, 2, 6]. By iteratively minimizing regret over possible strategies, CFR con-
verges towards equilibrium policies without exhaustive search, making it an attrac-
tive method for large-scale sequential games.

In this work, we focus on Pasur, a traditional fishing card game popular in Mid-
dle Eastern cultures, with a six-round structure and unique scoring rules. Each
round, players receive new cards while aiming to capture valuable cards from the
table through matching and summation mechanics. Unlike many extensively stud-
ied games, Pasur has not been rigorously solved, in part due to its combinatorial
complexity and memory-intensive game tree.

In this paper, we present a CUDA-accelerated implementation of CFR in Py-
Torch tailored to Pasur, addressing its computational challenges by decomposing
the game tree into game states and accumulated scores. Our approach computes
the complete game tree, enabling near-Nash equilibrium calculations rather than
relying on sampling methods. To further optimize GPU memory usage, we train
the CFR models round-by-round in reverse order, propagating average utilities to
ensure tractability. At any given time, only the tensors for the current round are
kept on the GPU; all others are stored in CPU memory. Our carefully designed data
structures made it possible to train and develop the entire CFR algorithm on a game
tree with an average size of 109, all within the constraints of a system with 32 GB of
RAM and 10 GB of VRAM. After computing a near-Nash equilibrium strategy, we
train a tree-based model to calculate the strategies for use during gameplay. These
tree-model also facilites the estimation of deck fair values through self-play.

This framework not only advances the strategic understanding of Pasur and
fishing card games more broadly, but also enables the development of practical AI
agents capable of playing at near-optimal levels. Moreover, this document details
the construction and update procedures of every step in the framework through
CodeSnippets, including the implementation of the CFR algorithm.

Several clarifications about the CodeSnippets are in order. The CodeSnippets
aim to convey as much detail as possible; however, certain operations are omitted
for clarity. These include routine tasks such as data type conversions and the use
of .clone() to avoid in-place modifications, if necessary. Additionally, we omit
the torch. prefix in all code expressions. For example, torch.any(t act[:,1,:],

dim=1) is written as any(t act[:,1,:], dim=1). It is also worth noting that not
all lines of code are shown in the CodeSnippets. For complete implementations,
we refer the reader to the GitHub repository2. Finally, we use symbolic notation to
simplify certain expressions. For instance, instead of t 1.repeat interleave(t 2),
we write t 1⊗t 2. Similarly, t 1⊗1t 2 denotes the dimension-specific form

t 1.repeat interleave(t 2, dim=1).

2Paper Homepage

2

https://sinabaghal.github.io/pasur/

1.1 Extensive Games and CFR

In Imperfect-Information Extensive-Form Games there is a finite set of players (P).
A node h at time T is defined by all the information revealed at a , particularly
the actions taken by players P. Terminal nodes, denoted by Z, are defined as those
nodes where no further action is available. For each player p ∈ P, there is a payoff
function up : Z → R. In this paper, we focus on the zero-sum two-player setting
i.e., P = {0, 1} and u0 = −u1.

Imperfect information is represented by information sets (infosets) for each
player p ∈ P. It is emphasized that at player p’s turn at infoset I, all nodes
h, h′ ∈ I are identical from p’s perspective. In this situation, we say infoset I be-
longs to p and we denote the set of all such infosets by Ip. Actions available at
infoset I are also denoted by A(I). A strategy σp(I) : A(I)→ R≥0 is a distribution
over actions in A(I). The strategy of other players is denoted by σ−p. We denote
by up(σp, σ−p) the expected payoff for p if players’ actions are governed by strategy
profile σ := {σp}p∈P .

Reach probability πσ(h) is defined as the probability of arriving at node h, if all
players play according to σ. For I ∈ Ip and h ∈ A(I), we denote by πσ

−p(h) the
probability of arriving at h in the event where p chooses to reach h and other players
follow σ. Define πσ

p (I) :=
∑

h∈I π
σ
p (h) and πσ

−p(I) :=
∑

h∈I π
σ
−p(h). Counterfactual

utility at infoset I ∈ Ip is defined as

uσ(I) :=
∑

h∈I,h′∈Z
πσ
−p(h)π

σ(h, h′)up(h
′) (1)

Similarly, counterfactual utility for a ∈ A(I), uσ(I, a) is defined as in (1), except
that p chooses a with probability 1 once it reaches I. Formally, if h.a denotes the
node wherein action a is chosen at node h, then

uσp (I, a) :=
∑

h∈I,h′∈Z
πσ
−p(h)π

σ(h.a, h′)up(h
′) (2)

Finally, in a two-player extensive game a Nash equilibrium [4] is a strategy profile
σ∗ for which the following holds

up(σ
∗
p, σ
∗
−p) = max

σ′
p

up(σ
′
p, σ
∗
−p).

In other words, σp is the best response to σ−p for each p ∈ P. An ϵ-Nash equilibrium
(in a two-player game, for example) is also defined as

up(σ
∗
p, σ
∗
−p) + ϵ ≥ max

σ′
p

up(σ
′
p, σ
∗
−p), ∀p ∈ {0, 1}.

We are now ready to provide an overview of CFR next; for a complete discussion,
see Zinkevich et al. (2007).

CFR is an iterative algorithm that converges to a Nash equilibrium in any finite

two-player zero-sum game with a theoretical convergence bound of O
(

1√
T

)
. At the

3

heart of CFR lies the concept of regret. For a strategy profile σ, instantaneous regret
of playing a vs. σ at I ∈ Ip is denoted by

rp(I, a) := uσp (I, a)− uσp (I) (3)

In CFR, a regret matching (RM) is performed at each iteration. According to RM,
at iteration T , σT+1

p (I) is determined using regrets (3) accumulated up to time T .
Formally,

σT+1
p (I) ∝ RT

+(I, a) :=

(
T∑
t=1

rt(I, a)

)
+

(4)

RT
+(I, a) is called counterfactual regret for infoset I action a. Under update rule (4),

average strategy is then defined as follows

σ̄T
p (I)(a) ∝

T∑
t=1

πσt

p (I)σt
p(I)(a). (5)

The following two well-established results show that under RM (4), the average
strategy (5) converges to a Nash equilibrium in zero-sum two-player games.

Theorem 1 In a zero-sum game, average strategy (5) is a 2ϵ-Nash equilibrium
provided that the total regret which is defined below is less than ϵ for p ∈ {0, 1}.

RT
p := max

σ′
p

1

T

T∑
t=1

(
up(σ

′
p, σ

t
−p)− up(σ

t
p, σ

t
−p)
)

The following theorem states that RT
p → 0 as T → +∞ under RM (4).

Theorem 2 (Theorem 3 & 4, [7]) Under RM (4), the following bound holds

RT
p = O

(
1√
T

)
.

Moreover, total regret is lower bounded by counterfactual regrets defined in (4).

There are different variants of CFR where the difference is in the way it updates
counterfactual regrets. For example, in CFR+ [5], regrets, initialized at zero, are
updated according to the following rule:

R+,t(I, a) =
(
R+,t−1(I, a) + uσ

t
(I, a)− uσ

t
(I)
)
+

Another example that is also used in this paper is the Discounted CFR (DCFR) [2],
where prior iterations when determining both regrets and the average strategy are
discounted. The update rule for DCFR is as follows:

Rt
p(I, a) = Rt−1

p (I, a) · dt−1p (I, a) + rtp(I, a) (6)

where

dtp(I, a) =


tα

tα + 1
if Rt

p(I, a) > 0

tβ

tβ + 1
otherwise

(7)

Moreover, the average strategies are updated according to the following rule:

σ̄t
p(I)(a) ∝

(
1− 1

t

)γ · σ̄t−1
p (I)(a) + πσt

p (I)σt
p(I)(a) (8)

4

1.2 Pasur

Pasur is a traditional card game played with a standard 52-card deck (excluding
jokers), and it supports 2 to 4 players. In this paper, we focus on the two-player
variant, where the players are referred to as Alex and Bob, along with a Dealer
who manages the game.

The game begins with four cards placed face-up on the table to form the initial
pool. This pool must not contain any Jacks. If a Jack appears among the initial
four cards, it is returned to the deck and replaced. If multiple Jacks are dealt, or if
a replacement card is also a Jack, the dealer reshuffles and redeals.

Once the pool is valid and face-up, the dealer deals four cards to each player,
starting with the player on their left (assumed to be Alex). Players then take turns
beginning with Alex. On each turn, a player must play one card from their hand.
The played card will either: Be added to the pool of face-up cards, or Capture
one or more cards from the pool, following rules described in Table 1. If a capture
is possible, the player must capture; they cannot simply add a card to the pool.
Captured cards are retained and used to calculate each player’s score at the end.

Card Type Capture Rule
Numeric One or more numeric cards from the pool if their total sum equals 11
Jack All cards in the pool, except Kings and Queens (can also capture other Jacks)
Queen A single Queen
King A single King

Table 1: Capture rules for each card type

A Sur occurs when a player captures all the cards from the pool in a single move.
There are two important exceptions: (1) a Sur cannot be made using a Jack, and
(2) Surs are not permitted during the final round of play. Table 2 outlines Pasur’s
scoring system, and Figure 1 provides a gameplay example.

Rule Points

Most Clubs 7
Each Jack 1
Each Ace 1
Each Sur 5

10◆ 3
2♣ 2

Table 2: Pasur Scoring System

5

Pasur: A Step-by-Step Gameplay Snapshot

Stage Alex Bob Pool Lay Pick Acl Bcl Apt Bpt Asr Bsr ∆ L CL

0 0 0 4♣ 4♢ 7♢ Q♣ 3♢ 3♡ 5♣ K♠ A♣ A♠ 9♢ K♢ 4♢ 0 0 0 0 0 0 0 0 -

0 0 1 4♣ 7♢ Q♣ 3♢ 3♡ 5♣ K♠ A♣ A♠ 4♢ 9♢ K♢ K♠ K♢ 0 0 0 0 0 0 0 B -

0 1 0 4♣ 7♢ Q♣ 3♢ 3♡ 5♣ A♣ A♠ 4♢ 9♢ Q♣ 0 0 0 0 0 0 0 B -

0 1 1 4♣ 7♢ 3♢ 3♡ 5♣ A♣ A♠ 4♢ 9♢ Q♣ 5♣ A♣ A♠ 4♢ 0 2 0 2 0 0 0 B -

0 2 0 4♣ 7♢ 3♢ 3♡ 9♢ Q♣ 4♣ 0 2 0 2 0 0 0 B -

0 2 1 7♢ 3♢ 3♡ 4♣ 9♢ Q♣ 3♢ 0 2 0 2 0 0 0 B -

0 3 0 7♢ 3♡ 3♢ 4♣ 9♢ Q♣ 7♢ 4♣ 1 2 0 2 0 0 0 A -

0 3 1 3♡ 3♢ 9♢ Q♣ 3♡ 1 2 0 2 0 0 0 A -

1 0 0 6♣ 6♢ 9♡ J♣ 6♡ 7♣ J♢ K♡ 3♢ 3♡ 9♢ Q♣ J♣ 3♢ 3♡ 9♢ 2 2 1 0 0 0 -2 A -

1 0 1 6♣ 6♢ 9♡ 6♡ 7♣ J♢ K♡ Q♣ J♢ 2 2 1 0 0 0 -2 A -

1 1 0 6♣ 6♢ 9♡ 6♡ 7♣ K♡ J♢ Q♣ 6♣ 2 2 1 0 0 0 -2 A -

1 1 1 6♢ 9♡ 6♡ 7♣ K♡ 6♣ J♢ Q♣ K♡ 2 2 1 0 0 0 -2 A -

1 2 0 6♢ 9♡ 6♡ 7♣ 6♣ J♢ Q♣ K♡ 6♢ 2 2 1 0 0 0 -2 A -

1 2 1 9♡ 6♡ 7♣ 6♣ 6♢ J♢ Q♣ K♡ 7♣ 2 2 1 0 0 0 -2 A -

1 3 0 9♡ 6♡ 6♣ 6♢ 7♣ J♢ Q♣ K♡ 9♡ 2 2 1 0 0 0 -2 A -

1 3 1 6♡ 6♣ 6♢ 7♣ 9♡ J♢ Q♣ K♡ 6♡ 2 2 1 0 0 0 -2 A -

2 0 0 5♢ 9♣ 10♡ K♣ A♢ 6♠ 8♣ 8♠ 6♣ 6♢ 6♡ 7♣ 9♡ J♢ Q♣ K♡ 10♡ 2 2 0 0 0 0 -1 0 -

2 0 1 5♢ 9♣ K♣ A♢ 6♠ 8♣ 8♠ 6♣ 6♢ 6♡ 7♣ 9♡ 10♡ J♢ Q♣ K♡ 8♣ 2 2 0 0 0 0 -1 0 -

2 1 0 5♢ 9♣ K♣ A♢ 6♠ 8♠ 6♣ 6♢ 6♡ 7♣ 8♣ 9♡ 10♡ J♢ Q♣ K♡ K♣ K♡ 3 2 0 0 0 0 -1 A -

2 1 1 5♢ 9♣ A♢ 6♠ 8♠ 6♣ 6♢ 6♡ 7♣ 8♣ 9♡ 10♡ J♢ Q♣ A♢ 10♡ 3 2 0 1 0 0 -1 B -

2 2 0 5♢ 9♣ 6♠ 8♠ 6♣ 6♢ 6♡ 7♣ 8♣ 9♡ J♢ Q♣ 5♢ 6♡ 3 2 0 1 0 0 -1 A -

2 2 1 9♣ 6♠ 8♠ 6♣ 6♢ 7♣ 8♣ 9♡ J♢ Q♣ 8♠ 3 2 0 1 0 0 -1 A -

2 3 0 9♣ 6♠ 6♣ 6♢ 7♣ 8♣ 8♠ 9♡ J♢ Q♣ 9♣ 3 2 0 1 0 0 -1 A -

2 3 1 6♠ 6♣ 6♢ 7♣ 8♣ 8♠ 9♣ 9♡ J♢ Q♣ 6♠ 3 2 0 1 0 0 -1 A -

3 0 0 2♣ 3♣ J♠ Q♠ 7♠ 8♢ 8♡ Q♡ 6♣ 6♢ 6♠ 7♣ 8♣ 8♠ 9♣ 9♡ J♢ Q♣ 2♣ 9♣ 5 2 2 0 0 0 -2 A -

3 0 1 3♣ J♠ Q♠ 7♠ 8♢ 8♡ Q♡ 6♣ 6♢ 6♠ 7♣ 8♣ 8♠ 9♡ J♢ Q♣ 8♢ 5 2 2 0 0 0 -2 A -

3 1 0 3♣ J♠ Q♠ 7♠ 8♡ Q♡ 6♣ 6♢ 6♠ 7♣ 8♣ 8♢ 8♠ 9♡ J♢ Q♣ J♠ 6♣ 6♢ 6♠ 7♣ 8♣ 8♢ 8♠ 9♡ J♢ 8 2 4 0 0 0 -2 A -

3 1 1 3♣ Q♠ 7♠ 8♡ Q♡ Q♣ 7♠ 8 2 4 0 0 0 -2 A -

3 2 0 3♣ Q♠ 8♡ Q♡ 7♠ Q♣ 3♣ 8 2 4 0 0 0 -2 A -

3 2 1 Q♠ 8♡ Q♡ 3♣ 7♠ Q♣ Q♡ Q♣ 8 3 4 0 0 0 -2 B -

3 3 0 Q♠ 8♡ 3♣ 7♠ Q♠ 8 3 4 0 0 0 -2 B -

3 3 1 8♡ 3♣ 7♠ Q♠ 8♡ 3♣ 8 4 4 0 0 0 -2 B -

4 0 0 4♡ 4♠ 7♡ J♡ 2♢ 5♡ 9♠ 10♠ 7♠ Q♠ 4♡ 7♠ 0 0 0 0 0 0 2 A A

4 0 1 4♠ 7♡ J♡ 2♢ 5♡ 9♠ 10♠ Q♠ 5♡ 0 0 0 0 0 0 2 A A

4 1 0 4♠ 7♡ J♡ 2♢ 9♠ 10♠ 5♡ Q♠ 7♡ 0 0 0 0 0 0 2 A A

4 1 1 4♠ J♡ 2♢ 9♠ 10♠ 5♡ 7♡ Q♠ 10♠ 0 0 0 0 0 0 2 A A

4 2 0 4♠ J♡ 2♢ 9♠ 5♡ 7♡ 10♠ Q♠ J♡ 5♡ 7♡ 10♠ 0 0 1 0 0 0 2 A A

4 2 1 4♠ 2♢ 9♠ Q♠ 2♢ 0 0 1 0 0 0 2 A A

4 3 0 4♠ 9♠ 2♢ Q♠ 4♠ 0 0 1 0 0 0 2 A A

4 3 1 9♠ 2♢ 4♠ Q♠ 9♠ 2♢ 0 0 1 0 0 0 2 B A

5 0 0 A♡ 3♠ 10♣ Q♢ 2♡ 2♠ 5♠ 10♢ 4♠ Q♠ A♡ 0 0 0 0 0 0 3 0 A

5 0 1 3♠ 10♣ Q♢ 2♡ 2♠ 5♠ 10♢ A♡ 4♠ Q♠ 5♠ 0 0 0 0 0 0 3 0 A

5 1 0 3♠ 10♣ Q♢ 2♡ 2♠ 10♢ A♡ 4♠ 5♠ Q♠ 10♣ A♡ 1 0 1 0 0 0 3 A A

5 1 1 3♠ Q♢ 2♡ 2♠ 10♢ 4♠ 5♠ Q♠ 10♢ 1 0 1 0 0 0 3 A A

5 2 0 3♠ Q♢ 2♡ 2♠ 4♠ 5♠ 10♢ Q♠ Q♢ Q♠ 1 0 1 0 0 0 3 A A

5 2 1 3♠ 2♡ 2♠ 4♠ 5♠ 10♢ 2♠ 4♠ 5♠ 1 0 1 0 0 0 3 B A

5 3 0 3♠ 2♡ 10♢ 3♠ 1 0 1 0 0 0 3 B A

5 3 1 2♡ 3♠ 10♢ 2♡ 1 0 1 0 0 0 3 B A

CleanUp 1 0 1 3 0 0 2 B A

Figure 1: Columns Acl, Apt, and Asr represent the number of clubs, points, and
surs collected or earned by Alex so far. Bcl, Bpt, and Bsr are defined similarly for
Bob. Once, at the end of any round, Acl exceeds 7, both Acl and Bcl reset to zero,
and the column CL indicates which player collected at least 7 clubs. According
to Pasur rules, this player earns 7 points. Collecting more than 7 clubs yields no
additional points unless the card is also a point card (i.e., e.g., A♣ or 2♣). The
column ∆ shows the cumulative point difference up to the end of the previous
round. ∆ updates at the end of each round to reflect the points earned in that
round. Finally, in the CleanUp phase, the player who made the last pick (as shown
in column L) collects all remaining cards from the pool. If any point cards are
present, the corresponding point columns will be updated. If there are club cards in
the CleanUp phase and neither player has yet reached 7 clubs, then the remaining
clubs in the pool determine who earns the 7-club bonus. In such situations, the
identity of the last player to pick becomes critical.

In the displayed game above, Alex earns the 7-club bonus. Bob gains 3
points from collecting 10♢, but he is trailing by 3 points from the rounds preceding
the last. Additionally, Alex earns 1 point in the final round from capturing the A♡
card. This results in a final score with Alex leading by 8 points. See Table 2 for
the Pasur scoring system.

6

2 PyTorch-Based Framework

In this section, we present our computational framework for implementing for sim-
ulating Pasur using PyTorch. The game consists of 6 rounds, and in each round,
both players take 4 turns, giving rise to a game tree of depth 48. We begin by
describing how a set of cards is represented as a PyTorch tensor. As illustrated in
Figure 2, each card is mapped to a unique tensor index according to a fixed, natural
order. The interpretation of the tensor values at these positions varies depending on
the specific tensor in which they appear: it may indicate card ownership (e.g., who
holds the card) or an action involving that card (e.g., laid or picked), depending on
whether the tensor encodes game state, actions, or other game-related structures.
This indexing convention serves as the foundation for constructing all tensors listed
in Table 4.

A♣ A♢ A♡ A♠ 2♣ 2♢ Q♡ Q♠ K♣ K♢ K♡ K♠

Figure 2: Mapping Cards to Indices

To manage memory efficiently during game tree generation, we maintain two
boolean tensors that track card availability throughout the game. Let m denote the
number of in-play cards—those currently in play, either held by a player or present
in the pool. For instance, in the first round, m = 12, since each player is dealt four
cards and four cards are placed in the pool. At the end of each round, we update
the set of in-play cards: we remove any cards that have been picked across all nodes
and add new cards that are about to be dealt.

This information is captured using the t inp tensor. This binary tensor marks
which cards are currently involved in the game—either held by players or present in
the pool—and serves as the basis for constructing and updating all relevant tensors
during game tree generation. It is emphasized that as a result of this, the shapes of
certain tensors—particularly those that represent actions or action history, such as
t act and t gme—may vary across rounds to reflect the current number of in-play
cards. To illustrate this point, consider the initial configuration of the game shown
in Table 3, with the corresponding t inp tensor depicted in Figure 3.

Table 3: Initial setup for a single game instance

Alex 4♣ 4♢ 7♢ Q♣
Bob 3♢ 3♡ 5♣ K♠
Pool A♣ A♠ 9♢ K♢

True False False True False False False False False True True

A♣ A♢ A♡ A♠ 2♣ 2♢ 2♡ 2♠ 3♣ 3♢ 3♡

False True False False False False True False True

J♠ Q♣ Q♢ Q♡ Q♠ K♣ K♢ K♡ K♠

Figure 3: t inp tensor at the beginning of the game for initial setup in Table 3

We next provide an overview how the game tree is generated and recorded using
tensor operations. During the tree construction process, we distinguish between

7

Game Tree (GT) Full Game Tree (FGT)

Unfold0 1

0 1 2 3 4

0 0 0 1 1

0 0 0 1 1 1 2 2 3 3 4 4

t edg = [0 1 2 0 1 2 3 4 3 4 3 4]

Figure 4: Unfolding Process

the card state—including the cards held by Alex, the cards held by Bob, and the
cards in the pool—and the score information, which is updated independently. A
given card state may correspond to multiple incoming edges, each representing a
different score inherited from earlier rounds. Figure 5 illustrates this structural
design. Alongside the Game Tree (GT) illustrated in Figure 5, we construct a Full
Game Tree (FGT) via an unfolding process (Figure 4), which systematically expands
the tree by combining each card state with all compatible incoming scores.

To ensure memory efficiency, the only parameters stored for FGT are the strategy
values at each node and the edges linking nodes between successive layers.

Thus, each node in FGT is represented as a pair: a GT node and its correspond-
ing incoming score. We explicitly maintain the edge structure between FGT nodes,
which is crucial for updating strategies during the CFR iterations. Figure 4 provides
a visual representation of the unfolding process. Further details on this mechanism
and the edge-tracking procedure are discussed in the subsections that follow.

This section is organized as follows. We begin by describing the mask and
padding tensors used during game tree generation in Subsection 2.1. These tensors
help track the indices of cards within the current tensor as the size of these tensors
may vary from round to round due to the fact that the set of in-play cards changes
dynamically. Next, in Subsection 2.2, we describe the construction of the Game
Tensors. These tensors encode the state and action history. Subsection 2.3 explains
how the Action Tensors are built and how they are used to update the Game
Tensors. Once the construction of the Action Tensors is understood, we proceed
to explain the construction of the Compressed Tensor in Subsection 2.4, where all
game information up to the current point is encoded in a tensor of shape [58].
Next, Subsection 2.5 explains the two types of score tensors used: the Running-
Score Tensor, which accumulates scores across a single round, and the score tensors
that are passed along the edges of GT, containing scores inherited from previous
rounds. Then, in Subsection 2.6, we detail how FGT Tensors are updated within
each round; it also introduces the construction of Edge Tensors. Following that,
Subsection 2.7 describes the Between-Hand updates, including how the Score Tensor
and FGT tensors are updated at the end of each round, along with the Linkage
Tensor. Finally, Subsection 2.8 explains how Infoset Tensors are constructed.

8

Game Tree (GT)

0

0 1 2 3 4

. .
. .
. .

..
..
..

.

0 1 2 -3 -2 -1

0 1 2 3 4 5 6

0 1 2 3 4 -3 -2 -1

.

..
..
..
..
.

. .
. .
. .
. .
.

0 1 2 3 4 -3 -2 -1

..
..
..
..
.

..
..
..
..
.

..
..
..
..
.

0 1 2 -3 -2 -1

. .
. .
. .
. .
.

..
..
..
..
.

0 1 2 . -3 -2 -1

0 1 2 3 4 5 6

Figure 5: We distinguish between the card state and the score information, which
are updated independently. A given card state may correspond to multiple incoming
edges, each representing a different score inherited from earlier rounds. Underlines
indicate the number of available actions for each parent node.

9

Before proceeding to the next section, we summarize the key components of our
framework in Table 4. Padding-related tensors are described separately in Table 5.

Table 4: Summary of Tensors Used in Our Framework

Component Tensor Shape Type Update Description

Game t gme [M,3,m] int8 Per turn Encodes state and action history per
node. Each slice represents a singleton
node in the tree layer.

In-Play
Cards

t inp [52] int8 Per round Boolean indicator for whether each of the
52 cards is still in play (held or in pool).

Dealt
Cards

t dlt [52] int8 Per round Boolean indicator marking cards that
have been dealt in previous rounds.

Full
Game

t fgm [Q, 2] int32
Per

turn/round
Each row [g, s] in t fgm indicates that
GT’s node t gme[g,:] inherits the score
with ID s from t scr. Here, Q denotes
FGT’s current layer’s number of nodes.

Scores t scr [Q, 4] int8
Per

turn/round
Unique score in form (Alex Clubs, Bob
Clubs, Point Difference, 7-Clubs Bonus).
Scaled each turn using ⊗t brf. See
Section 2.6 for in-between hands updates.

Runnsing
Scores

t rus [M,7] int8 Per turn Unique score in form (Alex Club, Bob
Club, Last Picker, Alex Points, Alex Sur,
Bob Points, Bob Sur).

Action t act [M’,2,m] int8 Per turn Action representation per node. [0,:]
encodes the lay card; [1,:] encodes
picked cards. Here, M’ denotes the
number of nodes in GT’s next layer.

Branch
Factor

t brf [M] int8 Per turn Number of valid actions available from
each node; used to replicate game states
before applying actions. Indicated using
underlines in Figure 5.

Linkage t lnk [Q] int32 Per round Connects FGT nodes between consecutive
hands to identify how scores and states
map across hands.

Edge t edg [Q’] int32 Per turn Records edges between FGT nodes to
track the structure of the overall graph.
Here, Q’ denotes the number of nodes in
the FGT’s next layer.

Strategy t sgm [Q] float32 Per turn Stores strategy values (e.g., probabilities)
associated with each FGT’s node.

Compressed
Game

t cmp [M, m] int8 Per turn Stores the entire game information up to
the current turn in a compressed format.

Infoset t inf [Q,58] int8 Per turn Encodes information available to player
whose turn it is. t inf hides information
that is not observable by the acting
player. Includes metadata such as round
index, turn counter, and cumulative score
up to the previous round.

10

2.1 Mask and Padding Tensors

We now describe how masks and padding tensors are constructed from the in-play
card tensor t inp, which has shape [M, 52] and indicates which cards are active
during a round.

Table 5: Mask and Padding Variables

Variable Description

t inn, t inq, t ink, t inj, t inc, t ins Masks for Numerical, Queen, King, Jack, Club, and Point cards resp.

i pdn, i pdj, i pdq, i pdk Padding sizes for Numerical, Jack, Queen, and King actions resp.

t pdq, t pdk Permutations to restore Queen and King actions to original order, resp.

Table 6: Index Sets for Card Categories and Scoring

Index Set Description

l n = range(40) Numerical cards (2 to 10 of all suits including Aces).
l j = [40, 41, 42, 43] Jacks.
l q = [44, 45, 46, 47] Queens.
l k = [48, 49, 50, 51] Kings.

l c = range(0, 52, 4) Clubs (every 4th card).
l p = [0,1,2,3,4,37,40,41,42,43] Scoring cards: all Aces, 2♣, 10♢, all Jacks.
l s = [1,1,1,1,2,3,1,1,1,1] Scores corresponding to entries in l p.

To compute masks in Table 5, we use the index sets from Table 6, which are
computed as follows:

t inn, t inq, t ink, t inj, t inc, t ins =

(f(index set) for index set in [l n,l q,l k,l j,l c,l s])

Here the helper function f is defined below:

f = lambda lm: tensor([id in lm for id,card in enumerate(t inp) if card])

We compute the counts of each category:

i n, i j, i q, i k = (t.sum() for t in [t inn, t inj, t inq, t ink])

We also define intermediate sums:

i kq = i k + i q

i jqk = i j + i q + i k

i njk = i n + i j + i k

i njq = i n + i j + i q

i njqk = i n + i j + i q + i k

Using these, we define:

11

i pdn, i pdj, i pdk, i pdq = i jqk, i kq, i njq, i njk

And the corresponding padding permutations:

t pdk = hstack((arange(i k, i njqk), arange(i k)))

t pdq = hstack((arange(i q, i njq), arange(i q), arange(i njq, i njqk)))

2.2 Game Tensor

Each row in the game tree (Figure 5) is represented using an [M,3,m] GT tensor
t gme, where M corresponds to the number of nodes in the current GT’s layer. The
associated [3,m] tensor is constructed for each node: Each slice t gme[g,:,:]

encodes a single game state. The first row of the tensor, t gme[g,0,:], represents
the current card holdings and pool status. To encode the game state numerically,
we assign integer identifiers to the entities involved, as shown in Table 7.

Table 7: State Encoding in t gme[g,0,:]

Element Encoding

Alex 1
Bob 2
Pool 3

The remaining two rows of t gme, namely t gme[g,1,:] and t gme[g,2,:],
record the action histories of Alex and Bob, resp. We describe the construction of
t gme[g,1,:] in detail below; the construction of t gme[g,2,:] is analogous.

Each round consists of four turns, meaning that Alex plays a card four times
per round. During each turn i trn = i, for i = 0, 1, 2, 3, he may or may not
collect cards from the pool.

Suppose Alex plays the card A♡ on his first turn and collects 10♡. We update
t gme[g, 1,:] by recording the value 1 at the position corresponding to A♡, and
adding the value 10 at the position corresponding to 10♡. If Alex collects multiple
cards from the pool on his first turn, the value 10 is added to all corresponding
positions in t gme[g, 1,:] for each collected card. For subsequent turns, similar
updates are performed, except we use the value pairs (2,20), (3,30), and (4,40)

instead of (1,10) for the second, third, and fourth turns, respectively.

Importantly, t gme[g,0,:] is updated after each move to reflect the current
state of the game. For cards that are played but not collected, the corresponding
position in t gme[g,0,:] is set to 3. If a played card is used to collect one or
more cards from the pool, then the corresponding positions are updated as follows:
hand cards that were played or picked change from 1 to 0, and pool cards that were
collected change from 3 to 0. See CodeSnippet 1.

12

2.3 Actions

At each turn, we first compute two key tensors: the Branch Factor Tensor t brf

and the Action Tensor t act: t brf is a tensor of length M, where M is the number
of nodes in the current round. Each entry t brf[g] records the number of valid
actions available from node g. Correspondingly, t act is a binary tensor of shape
[M’,2,m], where m is the number of in-play cards. Here, M’=t brf.sum() is the
total number of resulting nodes in the next round, created by enumerating all valid
actions from the current nodes. Each slice t act[j, :, :] encodes a single action,
consisting of two rows as described in Table 8.

Table 8: Structure of the Action Tensor t act

Tensor Slice Description

t act[j, 0, :] Encodes the lay card. Contains exactly one 1 at the index of the played card;
all other entries are 0.

t act[j, 1, :] Encodes the picked cards from the pool. May contain zero or more 1s de-
pending on the number of picked cards.

To update the game state tensor t gme for the next round, we first replicate
each current node g according to its corresponding t brf[g] count, effectively ex-
panding t gme to match the total number of action slices M’. This is done using the
repeat interleave operator, denoted by the Kronecker product symbol: ⊗.

t gme ← t gme ⊗ t brf

This expansion ensures that each valid action is paired with its own copy of the
corresponding game state. Then, each slice of t act is applied to the corresponding
replicated game state to produce the updated states. Finally, we apply the encoded
actions by updating t gme using t act. See CodeSnippet 1.

CodeSnippet 1 ApplyActions

1: Input t gme, t act, i ply, i trn

t act.shape[0] = t gme.shape[0] after expansion t gme ← t gme ⊗ t brf

2: t mpk ← any(t act[:,1,:], dim=1)

Whether a pick action occurs

3: t gme[t mpk,0,:]+=(2-i ply)*t act[t mpk,0,:]

Add lay card to pool (only if no pick)

4: t gme[t mpk,0,:]-=(1+i ply)*t act[t mpk,0,:]

Remove lay card from player’s hand

5: t gme[t mpk,0,:]-=3*t act[t mpk,1,:]

Remove picked cards from the pool

6: t gme[:,i ply+1,:]+=(i trn+1)*t act[:,0,:]+10*(i trn+1)*t act[:,1,:]

Update player record: lay (weighted by i trn+1) + pick (weighted by 10 Ö i trn+1)

We now present how the Action Tensor t act is constructed using the GT tensor
t gme. There are four types of actions: Numerical, Jack, King, and Queen. The
construction process is explained below. To derive actions from a given t gme ten-
sor, we first construct an int8 tensor of shape [2, 52] denoted as t 2x52, along

13

with various views such as t 2x40, t 2x44, and two t 2x4 tensors corresponding to
different action types. The construction of t 2x52 is explained in CodeSnippet 2.
Once t 2x52 is obtained, we define the inputs to each action operator as:

CodeSnippet 2 t 2x52

1: Input t gme

2: t 2x52 ← zeros((t gme.shape[0],2,t gme.shape[2]))

3: t 2x52[:,0,:][t gme[:,0,:]==i ply+1]←1

4: t 2x52[:,1,:][t gme[:,0,:]==3]←1

t 2x52[:,:,t msk] for t msk in [t inn, t inn+t inj, t ink, t inq]

These serve as inputs to the Numerical, Jack, King, and Queen action routines,
respectively. For memory efficiency, we first apply unique to these tensors and pass
the result to n act, j act, k act, and q act to compute the action and branch
factor tensors. We next pass each resulting action and branch tensor pair t act,

t brft to CodeSnippet 3 to map them back to the full tensor.

CodeSnippet 3 Mapping Back Actions from Unique Tensor to Full Tensor

1: Input t, f act # t: input tensor, f act: function to find actions (e.g., numerical, jack, etc.)

2: tu, t inx ← unique(t, sorted=Fasle, return inverse=True)

3: tu act, tu brf ← f act(tu)

4: t brf ← tu brf[t inx]

5: t act ← tu act[inverseunique(tu brf,t inx)]

6: return t brf, t act

7: function inverseunique(t cnt,t inx) # Ex: t cnt = [2,3], t inx = [1,0,0]

8: t cms ← zeros(t cnt.shape[0]+1, dtype=int32) # = [0,2,5]

9: t cms[1:] ← t cnt.cumsum(0)

10: t bgn ← t cms[t inx] # = [2,0,0]

11: t len ← t cnt[t inx] # = [3,2,2]

12: t lns ← t len.cumsum(0) # = [3,5,7]

13: t ofs ← arange(t lns[-1])-(t lns-t len)⊗t len

arange(t lns[-1])=[0,1,2,3,4,5,6], t lns-t len=[0,3,5]

(t lns - t len)⊗t len = [0,0,0,3,3,5,5], t ofs = [0,1,2,0,1,0,1]

14: return t bgn⊗t len + t ofs # = [2,2,2,0,0,0,0]+[0,1,2,0,1,0,1] = [2,3,4,0,1,0,1]

15: end function

We denote the resulting action tensors as t pck, t lay, t kng, t jck, t qun

and the corresponding branch factor tensors as c pck, c lay, c kng, c jck, c qun.
It is emphasized that n act produces two pairs of action and branch factor tensors:
Pick and Lay pairs. Pick actions correspond to cases where at least one card (along
with the card in hand) is picked from the pool, while Lay actions correspond to
cases where no card is picked and only one card is laid down and added to the pool.

We pad these tensors to match the original shape of tensor t 2x52 as follows:

14

t pck = pad(t pck, (0, i pdn))

t lay = pad(t lay, (0, i pdn))

t kng = pad(t kng, (0, i pdk))[:,:,t pdk]

t qun = pad(t qun, (0, i pdq))[:,:,t pdq]

t jck = pad(t jck, (0, i pdj))

The branch factor is also easily calculated as below

t brf = sum(stack([c pck, c lay, c kng, c qun, c jck]), dim=0)

We perform one final step to construct the action tensor t act. This step ensures
that all actions corresponding to each row of the game tensor are grouped together.
To achieve this, we repeat each row index of the game tensor according to its corre-
sponding branch factor, and then use the sorted indices to reorder the concatenated
action tensors.

, t inx = sort(cat([arange(M)⊗t for t in [c pck,c lay,c kng,c qun,c jck]]))

Once t inx is obtained, the final action tensor is constructed by concatenating all
action components and reordering them using t inx:

t act = cat([t pck, t lay, t kng, t qun, t jck])[t inx]

2.3.1 Numerical Actions

In this section, we explain how Numerical Actions are constructed. Recall that the
input tensor to n act is given by t 2x40 = t 2x52[:,:,t inn].

We begin by identifying all possible combinations of numerical cards such that
the sum of each subset equals 11. This is a classical instance of the Subset Sum
Problem (SSP), which we solve using dynamic programming. The solutions are
stored in a tensor t 40x2764 of shape [40, 2764], where each row corresponds to
one of the 40 numerical cards, and each column represents a valid subset whose sum
equals 11. We also define an auxiliary tensor t tpl as in Table 9.

Table 9: Tuple Tensor t tpl of shape [2, 2764]

Row Description

t tpl[0,:] All entries are 1, representing a fixed lay card for each action.
t tpl[1,:] Stores the number of cards from the pool that are involved in each action.

Since we mask only for in-play cards, we need to exclude those that are not
in-play. To this end, we apply the mask t inp[:40] to t 40x2764 by computing
t 40x2764[:, t inp[:40]], and pass the resulting tensor to n act. We still denote
t 40x2764 as the masked tensor for convenience. Moreover, denote by t 2764x40

the transpose of t 40x2764. We now describe how tensors t pck and t lay are
constructed. The process begins with t pck, from which t lay is subsequently
derived. Consider the matrix product

matmul(t 2x40, t 40x2764)

15

which results in a tensor of shape [M,2,2764], where M is the number of rows
in t 2x40. This tensor evaluates how each input pair of player hand and pool
(i.e., each row of t 2x40) overlaps with the precomputed subset-sum solutions in
t 40x2764. Notice masking out t 40x2764 does not affect the outcome of the matrix
multiplication, as masked entries are 0 and thus do not contribute to the result.

A pair of player hand and pool (i.e., row i of t 2x40) is said to have the action
j available if and only if the count of matching cards exactly matches the template
t tpl[:, j]. The following code yields all indices [i, j] such that action j is
valid for row i of t 2x40.

t inx = nonzero(((t tpl - matmul(t 2x40, t 40x2764)) == 0).all(dim=1))

We use the index tensor t inx to construct the pick action tensor t pck. Computing
the corresponding t brf is straightforward from t inx; it is computed as follows:

c pck = t inx[:,0].bincount(minlength=M)

Now that we have the number of actions availble for each row and also the indices of
the corresponding actions in t inx, we could obtain t pck as follows: We repeat each
row of t 2x40 based on the number of available actions for that row. Simultaneously,
we repeat each available action twice along dim=1. Then, we apply the logical and

operator to identify matching cards. The following performs this computation:

t pck = logical and(t 2x40⊗c pck, t 2764x40[t inx[:,1]].unsqueeze(1)⊗12)

Here each row of t 2764x40[t inx[:,1]] corresponds to a valid available action.

We are now ready to construct the Lay Action tensor t lay. The main idea
is to identify which cards in the player’s hand have not been used in any Pick
Action. To achieve this, we first build a tensor t hnd that records how many times
each card in the hand has been selected for a Pick Action. This is accomplished
using the scatter add operation. The index tensor used for this purpose has the
same shape as t pck[:,0,:], and rows corresponding to the same row in t 2x40

are grouped together through this index tensor. Once t hnd is constructed, we
subtract it from the player’s original hand tensor t 2x40[:,0,:] and apply relu

to isolate the remaining cards that were not picked. The result is a binary tensor
indicating candidate cards for Lay Actions. The remainder of the construction is
straightforward and presented in CodeSnippet 4.

16

CodeSnippet 4 Constructing Lay Action Tensor from Pick Tensor

1: m pck ← c pck > 0

2: t cnt ← c pck[m pck]

3: i cnt ← t cnt.shape[0]

4: # Construct hand tensor by summing picked cards

5: t hnd ← zeros((i cnt, m))

6: t inx ← (arange(i cnt)⊗t cnt).view(-1,1).expand(-1, m)

7: t src ← t pck[:,0,:]

8: t hnd.scatter add (0, t inx, t src)

9: # Remove picked cards from hand to construct lay

10: t cln ← t 2x40[:,0,:].clone()

11: t cln[m pck,:] ← relu(t 2x40[m pck,0,:]-t hnd)

12: # Find positions to lay the remaining card

13: t inx ← nonzero(t cln == 1)

14: c lay ← bincount(t inx[:,0], minlength=M)

15: t lay ← zeros((t inx.shape[0], 2, m))

16: t lay[arange(t lay.shape[0]), 0, t inx[:,1]] ← 1

2.3.2 Jack Actions

As discussed earlier, t 2x44 = t 2x52[:,:,t inn+t inj] serves as the input tensor
to the j act function. The first step is to identify all rows in t 2x44 that contain
Jack cards. This is accomplished by:

t inx ← nonzero(t 2x44[:, 0, i pdn:])

Recall from Table 5 that i pdn denotes the number of numerical cards among the
current in-play cards. The corresponding branch factor tensor is obtained via:

c jck ← t inx[:, 0].bincount(minlength=M)

To construct the Jack Action tensor t jck, we first let i cnt = t inx.shape[0].
Since each Jack card corresponds to exactly one action, the tensor t jck is initialized
with shape [i cnt, 2, m]. This tensor is then populated as follows:

t rng ← arange(i cnt)

t jck[t rng, 0, i pdn + t inx[:,1]] ← 1

t jck[t rng, 1, :] ← t 2x44[:,1,:]⊗c jck

2.3.3 King Actions

In this section, we describe how King Action is constructed; the construction of
Queen Action follows similarly. Recall that the input to k act is given by t 2x4 =

t 2x52[:, :, t ink]. Since we apply unique before passing the tensor to k act

(as explained earlier), the input tensor t 2x4 has a limited number of unique possi-
bilities. Specifically, the number of rows in t 2x4 cannot exceed 3**4 = 81. Each

17

row of t 2x4 is first converted into a string of length 4. To generate this string
representation, we first apply the transformation

t 2x4[:, 1, :][t 2x4[:, 1, :] == 1] = 2,

and then compute t 2x4.sum(dim=1), which is subsequently converted into a string
key. For example, ’0201’ indicates that the player holds a K♠, while the pool
contains a K♢. This key is then used to index into the dictionary to retrieve the
corresponding action tensor. Finally, we use this key to look up the corresponding
action tensor in our dictionary. CodeSnippet 5 summarizes this discussion. De-
tails regarding the lookup table are omitted here; please refer to the GitHub code
repository for full implementation details.

CodeSnippet 5 Constructing King Action Tensor

1: t 2x4[:, 1, :][t 2x4[:, 1, :] == 1] ← 2

2: M0 ← t 2x4.shape[0]

3: Build lookup tbl using t 2x4.sum(dim=1).
4: c k ← tensor([lookup tbl[i].shape[0] for i in range(M0)])

5: t k ← cat([lookup tbl[i] for i in range(M0)], dim=0)

2.4 Compressed Game Tensor

In this subsection, we represent a game tensor t gme of shape [M, 3, m] using a
compressed form t cmp of shape [M, m]. This compressed tensor is later used to
build the Infoset representation in Section 2.8. During GT construction, all resulting
t cmp tensors are stored, and it becomes straightforward to mask information not
observable by the acting player through simple masking operations. Next, we de-
scribe how t cmp is constructed and explain why this construction uniquely encodes
a GT layer, given the current In-Play tensor t inp. See CodeSnippet 6.

CodeSnippet 6 Compressed Game Tensor

1: Input: t gme

2: t cmp ← t gme[:,1,:] - t gme[:,2,:]

3: t lpm ← logical and(t gme[:,0,:] == 0, (t cmp != 0) & (t cmp.abs()

< 5))

4: t cmp[t lpm] ← 110 + t cmp[t lpm]

5: t cmp[logical and(t gme[:,0,:] == 3, t cmp == 0)] ← 110

6: t cmp[logical and(t gme[:,0,:] == 1, t cmp == 0)] ← 100

7: t cmp[logical and(t gme[:,0,:] == 2, t cmp == 0)] ← 105

In Table 11, we summarize all possible values that can appear in the compressed
tensor t cmp. Each card can have up to two legs in a round. The first leg corresponds
to when the card is laid into the pool, and the second leg corresponds to when it
is picked from the pool. A card may have only one leg in the current layer of the
game tensor—this occurs when a player lays the card into the pool, but it has not
yet been picked by any player. Alternatively, a card may have no legs in the current
round; this happens when the card was already in the pool at the start of the round

18

or is still held by one of the players. By design of the game tensor t gme, we can
characterize these situations precisely:

Table 10: Leg Status Conditions for Cards

No Legs One Leg Both Legs in Same Turn

t cmp==0 t gme[:,0,:]==3 & t cmp!=0 t gme[:,0,:]==0 & (t cmp != 0) & (t cmp.abs() < 5)

Table 11: Compressed Game Tensor Values in t cmp

Value First Leg Second Leg Description

100 — — Held by Alex
105 — — Held by Bob
110 — — Was already in the pool

111,112,113,114 Alex laid at i trn=0:3 Alex picked at same turn Both legs in same turn by Alex
109,108,107,106 Bob laid at i trn=0:3 Bob picked at same turn Both legs in same turn by Bob

1,2,3,4 Alex laid at i trn=0:3 — Not yet picked
-1,-2,-3,-4 Bob laid at i trn=0:3 — Not yet picked

-9,-19,-29,-39 Alex laid at i trn=0 Bob picked at i trn=0:3

-18,-28,-38 Alex laid at i trn=1 Bob picked at i trn=1:3

-27,-37 Alex laid at i trn=2 Bob picked at i trn=2:3

21,31,41 Alex laid at i trn=0 Alex picked at i trn=1:3

32,42 Alex laid at i trn=1 Alex picked at i trn=2:3

43 Alex laid at i trn=2 Alex picked at i trn=3

19,29,39 Bob laid at i trn=0 Alex picked at i trn=1:3

28,38 Bob laid at i trn=1 Alex picked at i trn=2:3

37 Bob laid at i trn=2 Alex picked at i trn=3

-21,-31,-41 Bob laid at i trn=0 Bob picked at i trn=1:3

-32,-42 Bob laid at i trn=1 Bob picked at i trn=2:3

-43 Bob laid at i trn=2 Bob picked at i trn=3

2.5 Score Tensors

There are two types of score tensors: those that store the score accumulated within a
single round, called the running-score tensor t rus, and those that are passed along
edges in GT, referred to as the score tensor t scr. The tensor t rus is initialized
to zero at the beginning of each round and is updated after every turn. At the end
of the round, the final value of t rus is used to update t scr. Tables 12 and 13
outline the meaning of each index in the score tensors t scr and t rus, respectively.
Note that the running-score tensor t rus includes additional components relevant
to a single round.

Table 12: Column definitions for the score tensor

Alex Club Bob Club Point Difference 7-Clubs Bonus

0 1 2 3

19

Table 13: Column definitions for the running-score tensor

Alex Club Bob Club Last Picker Alex Points Alex Sur Bob Points Bob Sur

0 1 2 3 4 5 6

We need to clarify an important point about the score tensor t scr. After each
round, once the number of Clubs collected by either Alex or Bob reaches 7, we
update the last column—the 7-Clubs Bonus—to reflect that one of the players has
achieved the bonus. Specifically, the value becomes 1 if Alex reaches 7 Clubs, or 2 if
Bob does. At the same time, the counts in the first two columns, which track Clubs
for Alex and Bob respectively, are reset to 0.

For example, the score vector [3, 8, 2, 0] is not a valid state; it will be
converted to [0, 0, 2, 2], indicating that Bob has earned the 7-Clubs bonus. At
this point, accumulating additional Clubs is irrelevant to the 7-Clubs bonus and is
therefore not tracked. The primary advantage of this design choice is that it reduces
the number of possible edges (and hence the size of the FGT), resulting in significant
savings in both computation and memory.

We omit the procedure for updating the running-score tensor and refer the reader
to the Github repository.

2.6 In-Hand Updates

In this section, we explain how in-hand updates are performed. A key operation
required throughout is a generalized version of torch.repeat interleave, which
we refer to as RepeatBlocks. Unlike torch.repeat interleave, which repeats
individual elements, RepeatBlocks operates on entire contiguous blocks of elements
and repeats them as a whole. This operation is detailed in Appendix 5.

We now explain how FGT is updated within each round. Two tensors are up-
dated during this process: the FGT tensor t fgm and the Edge tensor t edg, which
captures the connections between nodes across successive layers of FGT.

The FGT tensor t fgm is used to track which scores accumulated from previous
rounds (stored in t scr) are linked to each node of the GT tensor t gme. A row
entry [g, s] in t fgm indicates that node t gme[g] inherits the score t scr[s]

from a previous round. See Figure 6 for an example consistent with the setting
illustrated on the left-hand side of Figure 4.

Figure 4 illustrates how t edg is constructed. On the left-hand side, we show
two parent nodes—one with 2 child nodes and 3 inherited scores, and the other with
3 child nodes and 2 inherited scores. The right-hand side of the figure illustrates the
corresponding structure within FGT. Here, colors denote inherited scores from the
previous round, and numbers represent the row indices from the current GT tensor
t gme. An edge is drawn when the score colors match and the nodes are connected
in the folded GT. In this example, the tensor

t edg = [0,1,2,0,1,2,3,4,3,4,3,4]

records the parent indices in FGT. The counts of inherited scores and available

20

t scr =


 , t fgm =


0

0

0

1

1


Figure 6: An example illustrating how the FGT tensor t fgm associates nodes in
the GT with entries in the Score Tensor t scr. Colors are used to indicate rows of
t scr, consistent with Figure 5. Each row of t scr is represented by a tensor of
size 4, as described in Table 12.

actions per parent are given by c scr = [3,2] and t brf = [2,3], respectively.
This structure can be generated compactly by the RepeatBlocks operator as follows:

t edg← arange(t fgm.shape[0])⊗c scr t brf.

We will next explain how the FGT tensor t fgm is updated. Figure 7 shows the
t fgm tensors before and after the update, corresponding to the setting of Figure 4.
The update to t fgm is performed in two phases: first, we update t fgm[:,1]; then,
we update t gme and c scr before proceeding to update t fgm[:,0]. We have

t fgm[:,1]←
[]

⊗[3,2] [2,3]

where the first tensor on the right-hand side is t fgm[:,1]. The first three colors
are repeated twice on the right-hand side of Figure 7 because t brf[0] = 2, and
the last two are repeated three times because t brf[1] = 3. Therefore

t fgm[:,1]← t fgm[:,1]⊗c scr t brf

Furthermore,
t fgm[:,0]← [0,1,2,3,4]⊗[3,3,2,2,2]

In words, each node in GT’s second layer in the left-hand side of Figure 4 is repeated
as many times as the number of scores it inherited from the previous round. Namely,

t fgm[:,0]← arange(t gme.shape[0])⊗c scr

Both t gme and c scr are updated before the equation above.

2.7 Between-Hand Updates

In this section, we introduce the processing framework used at the beginning of each
hand. Figure 8 illustrates this process. By the end of each hand, we obtain a set of
GT nodes, each associated with one or more inherited scores from previous rounds.
Our goal is to construct the root-level nodes of GT’s next round, along with their
inherited scores. To begin, we identify the unique game states and running-score

21


0

0

0

1

1

 −−−−→



0

0

0

1

1

1

2

2

3

3

4

4


Figure 7: An illustration of how t fgm is updated.

tensors at the terminal level of the current round. This is achieved via the following
operation:

t gme, t gnk = unique(t gme, dim=0, sorted=False, return inverse=True)

t rus, t rnk = unique(t rus, dim=0, sorted=False, return inverse=True)

We first update the second column of FGT tensor t fgm, namely t fgm[:,1], which
encodes the inherited scores. To propagate scores correctly, we take the score com-
ponents from the previous round, stored in t fgm[:,1], and add the scores earned
during the current hand, recorded in t rus. To this end, we represent each player’s
total score—comprising both the inherited and running components—as follows:

t prs ← cat([t fgm[:,1], t rnk[t fgm[:,0]]], dim=1)

Concatenate these two components to identify the unique score combinations:

t prs, t pid← unique(t prs, dim=0, sorted = False, return inverse=True)

Each unique pair in t prs represents a total score passed to the next round, and is
computed by summing the individual components:

t scr ← t scr[t prs[:,0]]+t rus[t prs[:,1]]

We next eliminate duplicate score values using another call to unique:

t scr, t fid← unique(t scr, dim=0, soretd=False, return inverse=True)

This gives us enough ingredients to update t fgm[:,1] as follows:

t fgm[:,1]← t fid[t pid]

Now we update the first column of the FGT t fgm[:,0] as follows:

t fgm[:,0]← t gnk[t fgm[:,0]]

22

0 1 2 . -3 -2 -1

0 1 2 3 4 5 6

Figure 8: An illustration of between-hand processing. Note that the number of
incoming edges to each terminal node in the last round is equal to the number of
edges going from that node to the root-level node in the next round. However, the
color may change, as the corresponding running-score tensor is added to each score
inherited from previous rounds.

Note that this is an intermediate step: the final version of t fgm will be updated
later in the process. Next, we determine how scores are passed from one hand to
the next. That is, we construct the new t fgm[:,1] tensor for the upcoming round.
Finally, we find unique rows in t fgm as follows:

t fgm, t lnk ← unique(t fgm,dim=0, sorted=False, return inverse=True)

CodeSnippet 7 summarizes the steps discussed above.



0

0

0

1

1

1

2

2

3

3

4

4







cat−−−−→





unique−−−−−−→




sum−−−−→




unique−−−−−−→




Figure 9: An illustration of between-hand updates for t fgm.

2.8 Infoset Tensors

In this section, we represent FGT’s nodes using the int8 Infoset Tensor t inf,
where each row has shape [58]. This tensor encodes all information available at
that point in the game tree and can be easily adapted to mask any information not
observable by the acting player. This design serves two primary purposes: first,
to ensure memory efficiency; and second, to provide a compact representation of
both the game state and associated action information. These representations are
later used to train a tree-based model to approximate the strategy profile, which is

23

CodeSnippet 7 BetweenHands

1: Input t gme,t fgm,t scr,t dck

2: t gme, t gnk ← unique(t gme,dim=0)

3: t rus, t rnk ← unique(t rus,dim=0)

4: t prs ← cat([t fgm[:,1],t rnk[t fgm[:,0]]], dim=1)

5: t prs,t pid ← unique(t prs,dim=0)

6: t scr ← t scr[t prs[:,0]]+t rus[t prs[:,1]]

7: t scr, t fid ← unique(t scr, dim=0)

8: t fgm[:,1] ← t fid[t pid]

9: t fgm[:,0] ← t gnk[t fgm[:,0]]

10: t fgm, t lnk ← unique(t fgm,dim=0)

Note: All the unique operations here consider sorted=False,return inverse=True

subsequently used in self-play simulations, as described in Section 3. It is important
to emphasize that these infoset tensors are used only after the Nash equilibrium
has been learned using the CFR algorithm. Tensor t inf consists of three distinct
parts, summarized in Table 14 and CodeSnippet 8 explains its construction process.

Table 14: Index structure of the t inf tensor

Index Range Section Description

0:52 Cards Status/history of each card
52:55 Score context Inherited scores such as club points and point differential
55:58 Metadata Round index, turn counter, and current player indicator

CodeSnippet 8 Infoset Tensor

1: t inf ← zeros((Q, 58)) # Q=t fgm.shape[0]

2: t inf[:, t inp]←t cmp[t fgm[:,0]]

3: t inf[:,52:55]←t scr[t fgm[:,1]]

4: t inf[logical and(t dlt==1,t inf==0)]←-127# for any dealt card represented

in t dlt & not present in t gme, -127 is assigned i.e., card is collected in past rounds.

5: t inf[:,55:58]←tensor([i hnd,i trn,i ply])

2.9 External Sampling

In this section, we describe the procedure for external sampling used during the
unfolding process. Although the present work does not rely on or develop specific
sampling techniques, we include this explanation for the sake of completeness and
future reference. The external sampling method outlined here will play a key role
in subsequent extensions of this research, where sampling-based approaches will be
more actively explored and integrated into the modeling framework.

In external sampling, a single action is selected for the opponent based on their

24

Game Tree Full Game Tree

Unfold w/

Ext. Sampling

0 1

0 1 2 3 4

0 0 0 1 1

0 0 0 1 1 1 2 2 3 3 4 4

0 1 2 3 4

Figure 10: An illustration of how t edg is constructed under ex. sampling regime.

current strategy. This selection is performed within FGT, as illustrated in Figure 10.
To further aid understanding, Figure 11 illustrates how the FGT tensor t fgm is
updated/sampled. CodeSnippet 9 details the procedure used in external sampling.


0

0

0

1

1

 −−−−→

→
→
→

→

→



0

0

0

1

1

1

2

2

3

3

4

4


Figure 11: An illustration of how t fgm is updated under ext. sampling regime.

25

CodeSnippet 9 ExternalSampling

1: Input t edg,c edg,t sgm

#t edg links lower to upper nodes, while c edg specifies the degree of each upper node.

#Ex: t edg = [0,1,2,0,1,2,3,4,3,4,3,4], c edg = t brf⊗c scr = [2,2,2,3,3]

2: t inv = argsort(t edg, stable=True)

#t inv = [0,3,1,4,2,5,6,8,10,7,9,11]

#use t inv when sorting edges.1st green maps to index 0, 2nd green maps to index 3, etc

3: t idx = empty like(t inv)

4: t idx[t inv] ← arange(len(t inv))

#t idx =[0, 2, 4, 1, 3, 5, 6, 9, 7, 10, 8, 11]

#use t idx when mapping back sorted edges

5: i max = c edg.max()

6: t msk = arange(i max).unsqueeze(0) < c edg.unsqueeze(1)

#t msk = tensor([[T, T, F], [T, T, F], [T, T, F], [T, T, T], [T, T, T]])

7: t mtx = zeros like(t msk)

8: t mtx[t msk] ← t sgm[t inv]

9: t smp = multinomial(t mtx).squeeze(1)

#sampled indices for each row

10: t gps = cat([0, c edg.cumsum()[:-1]])

11: t res = zeros like(t sgm, dtype=bool)

12: t res[t gps + t smp] ← True

13: t res ← t res[t idx]

2.10 CFR Algorithm

In this section, we provide details on the PyTorch implementation of CFR for Pasur,
following the framework outlined in the previous sections.

Our approach is as follows: for each round, we compute the average utility at
the root-level nodes of the FGT. This utility is then propagated backward to the
preceding round, where CFR is applied to compute the utilities for that round’s
root-level nodes. While this process is underway within a round, we simultaneously
compute the average strategy profile (Equation (5)) for that round.

It is important to emphasize that when working within a round, the reach prob-
abilities for the root-level nodes are all set to 1. Since Pasur consists of six rounds,
we apply the CFR algorithm six times—once per round. The utility for the final
round is computed directly by calculating the final score. Notably, the running-score
tensor t rus is added to the utility of the final-layer nodes before applying CFR.

We treat utility values with equal weights, based on the logic that each unit of
utility represents a point earned under the Nash Equilibrium at that terminal node
within the round. Because t rus reflects the points accumulated during that round,
it is appropriate to add it linearly to the computed utility.

This round-by-round implementation is both more accurate and memory-efficient.
First, by computing utilities one round at a time rather than propagating utilities
from terminal nodes all the way to the top of the full game tree, we improve numer-
ical stability. This localized computation reduces the accumulation of floating-point

26

errors that can arise when backpropagating through long sequences. Second, by
isolating the computation to a single round at a time, we only need to move the
relevant tensors for that round to the GPU, while keeping the rest on the CPU.
Importantly, all tensors involved in our framework are stored on the CPU for use in
the CFR algorithm. This design choice significantly reduces GPU memory pressure
during training. As a result, we require significantly less GPU VRAM to compute
the Nash Equilibrium. On the other hand, the main downside is the increased com-
plexity in implementation and debugging, as computations must now be carefully
coordinated across multiple rounds.

We begin by obtaining the final scores from FGT’s terminal nodes. This can be
achieved using the following:

t fsc = 7*(2*(t scr[:,-1] % 2) - 1)

t utl = t fsc[t fgm[:,1]]
(9)

Within CodeSnippet 7, we need to reverse Line (10) to recover t utl at the
terminal nodes. In other words, the t utl tensor computed above can be interpreted
as the root-level utility of the next round, which must be passed back to the terminal
level of the current round. Once t utl is obtained at the root level for each round,
it should be propagated upward to the terminal nodes of the previous round and
combined with the corresponding running-score tensor for each FGT node at that
level. The following code accomplishes this:

t rus = t rus⊗ c scr

t utl = t utl[t lnk]+ t rus
(10)

Here t lnk is defined in the final step of CodeSnippet 7 and t rus appears in the
same CodeSnippet, prior to being passed through unique in line 3.

The next three CodeSnippets present the CFR algorithm. There are two main
components: the FindUtility and FindReachProbability functions. The overall
CFR algorithm is shown in CodeSnippet 10.

27

CodeSnippet 10 CFR

1: function runcfr
2: Compute g utl # via Equation (9)

3: for round in reversed(rounds) do

4: g utl ← Pass back up g utl via Equation (10)
5: Initialize g reg, g sgm, g UTL

g reg (init. to 0): regrets for all the availble actions, rt in Eq. (6),

g sgm (init. to uniform): strategy profile, σt in Eq. (4)

g UTL (init. to 0): root-node utilities for current round, Rt in Eq. (6)

6: for t in range(NUM ITER) do
7: g rpr ← findrpr(g sgm)
8: t utl, g sgm, a sgm, g reg ← FindUtility(g rpr, g utl)
9: g UTL ← g UTL + t utl

10: end for
11: g utl ← g UTL/NUM ITER

12: g sgm ← Normalize(a sgm) # Each FGT node’s children’s values sum to 1

13: end for
14: end function

CodeSnippet 11 FindReachProbability

1: function findrpr(g sgm, i cfr) # g sgm:current round’s strategy. σt in Eq. (4)

2: i h ← # nodes in current round’s root level

3: t rpr ← ones(i h)

4: d rpr ← {}
5: for i trn in range(4) do
6: for i ply in range(2) do

7: i htp ← i hnd i trn i ply

8: t sgm ← g sgm[i htp]

9: t sgm ← ones like(t sgm) if i ply == i cfr

10: t edg ← gt edg[i htp] # CUDA tensors gt edg contains FGT edges

11: d rpr[i htp] ← t sgm * t rpr[t edg]

12: t rpr ← d rpr[i htp]

13: end for
14: end for
15: return d rpr

16: end function

28

CodeSnippet 12 FindUtility

1: function FindUtility(t utl, g sgm, a sgm, g reg, g rp0, g rp1)
Input: gt edg: FGT edges, gc edg: FGT branch factor

TOL = 1e-5, a sgm: average strategy, g rp0, g rp1: reach probs for Alex & Bob resp.

g sgm: current strategy

2: for i trn in reversed(range(4)) do
3: for i ply in reversed(range(2)) do

4: i htp ← i hnd i trn i ply

5: i h ← # nodes in current layer’s root-level

6: t ply, t opp ← g rp0[i htp], g rp1[i htp] if i ply == 1

7: t ply, t opp ← g rp1[i htp], g rp0[i htp] if i ply == 0

8: c edg,t edg,t sgm←gc edg[i htp], gt edg[i htp],g sgm[i htp]

9: t pt2 ← zeros(i h)

10: t pt2.scatter add (0,t edg,t sgm*t utl)

11: t reg ← (1-2*i ply)*t opp*(t utl-t pt2[t edg])

12: t utl ← t pt2

13: t msk ← g reg[i htp] >= TOL

14: t fct ← zeros like(g reg[i htp])

15: t fct[t msk] ← i cnt**1.5/(1+i cnt**1.5)

16: t fct[~t msk] ← 0.5

17: g reg[i htp] ← t fct*g reg[i htp]+t reg

18: t rts ← clamp(1000*g reg[i htp], min=TOL)

19: t sum ← zeros(i h)

20: t sum.scatter add (0, t edg, t rts)

21: t msk ← t sum[t edg] <= TOL

22: t sgm[~t msk] ← t rts[~t msk]/t sum[t edg][~t msk]

23: t sgm[t msk] ← (1/c edg[t edg])[t msk]

24: a sgm[i htp]←(1-1/(1+i cnt)**2)*a sgm[i htp] + t sgm*t ply

25: g sgm[i htp] ← t sgm

26: end for
27: end for

28: return t utl, a sgm, g sgm, g reg

29: end function

29

3 Experimental Evaluation

We trained more than 500 randomly generated decks using the CFR algorithm
and obtain strategy profiles similar (stored in .parquete) to the one shown in
Table 15. Figure 12 shows the distribution of the sizes of the resulting full game
trees corresponding to the shapes of the strategy profile tables.

Figure 12: Distribution of game tree sizes (i.e., strategy profile table shapes) across
500 randomly generated decks.

We also illustrate a near-Nash equilibrium strategy, computed via CFR, in Fig-
ure 13 and Table 15. Figure 13 shows a sample game between two near-Nash strate-
gies, while Table 15 lists their first-turn strategies in the first round.

Once we have the strategy profiles at our disposal, we fit an XGBoost model to
predict 100×σ, using root mean squared error (RMSE) as the evaluation metric and
setting gamma=1 as the regularization parameter. This allows us to pass the current
infoset to the model in order to obtain a near-Nash strategy for the active player.
The main advantage of this approach is that it enables the simulation of multiple
self-play games in parallel on the GPU. Specifically, if N denotes the number of self-
play instances, then the infoset tensor at each turn has shape [N, 58]. Sampling
based on the learned strategy profile is performed using the same method introduced
in CodeSnippet 9.

With the ability to run multiple self-play games in parallel, we can now estimate
the fair value of each deck composition. To do so, we let two near-Nash equilibrium
strategies compete against each other using a given deck. The percentage of games
won by Alex, divided by 100, is what we define as the fair value of that deck. As
a first sanity check during development, we evaluated our model against a random
strategy. Figure 14 presents the results: the left panel shows near-Nash vs. near-
Nash, the middle panel shows near-Nash vs. Random, and the right panel shows
Random vs. near-Nash.

30

Sample Game Played Between Near-Nash Strategies

Stage Alex Bob Pool Lay Pick Acl Bcl Apt Bpt Asr Bsr ∆ L
0 0 0 4♣ 4♢ 7♢ Q♣ 3♢ 3♡ 5♣ K♠ A♣ A♠ 9♢ K♢ 7♢ 0 0 0 0 0 0 0 0
0 0 1 4♣ 4♢ Q♣ 3♢ 3♡ 5♣ K♠ A♣ A♠ 7♢ 9♢ K♢ 3♢ A♣ 7♢ 0 1 0 1 0 0 0 B
0 1 0 4♣ 4♢ Q♣ 3♡ 5♣ K♠ A♠ 9♢ K♢ 4♢ 0 1 0 1 0 0 0 B
0 1 1 4♣ Q♣ 3♡ 5♣ K♠ A♠ 4♢ 9♢ K♢ 3♡ 0 1 0 1 0 0 0 B
0 2 0 4♣ Q♣ 5♣ K♠ A♠ 3♡ 4♢ 9♢ K♢ Q♣ 0 1 0 1 0 0 0 B
0 2 1 4♣ 5♣ K♠ A♠ 3♡ 4♢ 9♢ Q♣ K♢ K♠ K♢ 0 1 0 1 0 0 0 B
0 3 0 4♣ 5♣ A♠ 3♡ 4♢ 9♢ Q♣ 4♣ 3♡ 4♢ 1 1 0 1 0 0 0 A
0 3 1 5♣ A♠ 9♢ Q♣ 5♣ 1 1 0 1 0 0 0 A

1 0 0 6♣ 6♢ 9♡ J♣ 6♡ 7♣ J♢ K♡ A♠ 5♣ 9♢ Q♣ J♣ A♠ 5♣ 9♢ 3 1 2 0 0 0 -1 A
1 0 1 6♣ 6♢ 9♡ 6♡ 7♣ J♢ K♡ Q♣ 6♡ 3 1 2 0 0 0 -1 A
1 1 0 6♣ 6♢ 9♡ 7♣ J♢ K♡ 6♡ Q♣ 9♡ 3 1 2 0 0 0 -1 A
1 1 1 6♣ 6♢ 7♣ J♢ K♡ 6♡ 9♡ Q♣ 7♣ 3 1 2 0 0 0 -1 A
1 2 0 6♣ 6♢ J♢ K♡ 6♡ 7♣ 9♡ Q♣ 6♢ 3 1 2 0 0 0 -1 A
1 2 1 6♣ J♢ K♡ 6♢ 6♡ 7♣ 9♡ Q♣ K♡ 3 1 2 0 0 0 -1 A
1 3 0 6♣ J♢ 6♢ 6♡ 7♣ 9♡ Q♣ K♡ 6♣ 3 1 2 0 0 0 -1 A
1 3 1 J♢ 6♣ 6♢ 6♡ 7♣ 9♡ Q♣ K♡ J♢ 6♣ 6♢ 6♡ 7♣ 9♡ 3 3 2 1 0 0 -1 B

2 0 0 5♢ 9♣ 10♡ K♣ A♢ 6♠ 8♣ 8♠ Q♣ K♡ 9♣ 3 3 0 0 0 0 0 0
2 0 1 5♢ 10♡ K♣ A♢ 6♠ 8♣ 8♠ 9♣ Q♣ K♡ 6♠ 3 3 0 0 0 0 0 0
2 1 0 5♢ 10♡ K♣ A♢ 8♣ 8♠ 6♠ 9♣ Q♣ K♡ K♣ K♡ 4 3 0 0 0 0 0 A
2 1 1 5♢ 10♡ A♢ 8♣ 8♠ 6♠ 9♣ Q♣ 8♣ 4 3 0 0 0 0 0 A
2 2 0 5♢ 10♡ A♢ 8♠ 6♠ 8♣ 9♣ Q♣ 5♢ 6♠ 4 3 0 0 0 0 0 A
2 2 1 10♡ A♢ 8♠ 8♣ 9♣ Q♣ 8♠ 4 3 0 0 0 0 0 A
2 3 0 10♡ A♢ 8♣ 8♠ 9♣ Q♣ 10♡ 4 3 0 0 0 0 0 A
2 3 1 A♢ 8♣ 8♠ 9♣ 10♡ Q♣ A♢ 10♡ 4 3 0 1 0 0 0 B

3 0 0 2♣ 3♣ J♠ Q♠ 7♠ 8♢ 8♡ Q♡ 8♣ 8♠ 9♣ Q♣ Q♠ Q♣ 5 3 0 0 0 0 -1 A
3 0 1 2♣ 3♣ J♠ 7♠ 8♢ 8♡ Q♡ 8♣ 8♠ 9♣ 7♠ 5 3 0 0 0 0 -1 A
3 1 0 2♣ 3♣ J♠ 8♢ 8♡ Q♡ 7♠ 8♣ 8♠ 9♣ 2♣ 9♣ 7 3 2 0 0 0 -1 A
3 1 1 3♣ J♠ 8♢ 8♡ Q♡ 7♠ 8♣ 8♠ 8♡ 7 3 2 0 0 0 -1 A
3 2 0 3♣ J♠ 8♢ Q♡ 7♠ 8♣ 8♡ 8♠ J♠ 7♠ 8♣ 8♡ 8♠ 8 3 3 0 0 0 -1 A
3 2 1 3♣ 8♢ Q♡ Q♡ 8 3 3 0 0 0 -1 A
3 3 0 3♣ 8♢ Q♡ 3♣ 8 3 3 0 0 0 -1 A
3 3 1 8♢ 3♣ Q♡ 8♢ 3♣ 8 4 3 0 0 0 -1 B

4 0 0 4♡ 4♠ 7♡ J♡ 2♢ 5♡ 9♠ 10♠ Q♡ J♡ 0 0 0 0 0 0 2 0
4 0 1 4♡ 4♠ 7♡ 2♢ 5♡ 9♠ 10♠ J♡ Q♡ 2♢ 0 0 0 0 0 0 2 0
4 1 0 4♡ 4♠ 7♡ 5♡ 9♠ 10♠ 2♢ J♡ Q♡ 7♡ 0 0 0 0 0 0 2 0
4 1 1 4♡ 4♠ 5♡ 9♠ 10♠ 2♢ 7♡ J♡ Q♡ 9♠ 2♢ 0 0 0 0 0 0 2 B
4 2 0 4♡ 4♠ 5♡ 10♠ 7♡ J♡ Q♡ 4♡ 7♡ 0 0 0 0 0 0 2 A
4 2 1 4♠ 5♡ 10♠ J♡ Q♡ 5♡ 0 0 0 0 0 0 2 A
4 3 0 4♠ 10♠ 5♡ J♡ Q♡ 4♠ 0 0 0 0 0 0 2 A
4 3 1 10♠ 4♠ 5♡ J♡ Q♡ 10♠ 0 0 0 0 0 0 2 A

5 0 0 A♡ 3♠ 10♣ Q♢ 2♡ 2♠ 5♠ 10♢ 4♠ 5♡ 10♠ J♡ Q♡ 10♣ 0 0 0 0 0 0 2 0
5 0 1 A♡ 3♠ Q♢ 2♡ 2♠ 5♠ 10♢ 4♠ 5♡ 10♣ 10♠ J♡ Q♡ 5♠ 0 0 0 0 0 0 2 0
5 1 0 A♡ 3♠ Q♢ 2♡ 2♠ 10♢ 4♠ 5♡ 5♠ 10♣ 10♠ J♡ Q♡ 3♠ 0 0 0 0 0 0 2 0
5 1 1 A♡ Q♢ 2♡ 2♠ 10♢ 3♠ 4♠ 5♡ 5♠ 10♣ 10♠ J♡ Q♡ 10♢ 0 0 0 0 0 0 2 0
5 2 0 A♡ Q♢ 2♡ 2♠ 3♠ 4♠ 5♡ 5♠ 10♣ 10♢ 10♠ J♡ Q♡ A♡ 10♣ 1 0 1 0 0 0 2 A
5 2 1 Q♢ 2♡ 2♠ 3♠ 4♠ 5♡ 5♠ 10♢ 10♠ J♡ Q♡ 2♠ 4♠ 5♠ 1 0 1 0 0 0 2 B
5 3 0 Q♢ 2♡ 3♠ 5♡ 10♢ 10♠ J♡ Q♡ Q♢ Q♡ 1 0 1 0 0 0 2 A
5 3 1 2♡ 3♠ 5♡ 10♢ 10♠ J♡ 2♡ 1 0 1 0 0 0 2 A

CleanUp 1 0 5 0 0 0 2 A

Figure 13: Some highlight of sound decisions made by both players: Since both
players have full knowledge of each other’s hands, Alex should avoid playing either
4♣ or 4♢. Doing so would allow Bob to respond immediately by collecting A♣ and
A♠ with his 5♣, thereby securing 2 points and at least two clubs. Assuming instead
that Alex plays A♣ and A♠ on his first move, Bob’s optimal response is to collect
using his 5♣. Finally, if Alex plays 7♢, Bob should respond by picking up one Ace
using either his 3♢ or 3♡. It is emphasized that the strategy profile in Table 15
reflects all of these observations.

A♣ A♠ 3♢ 3♡ 4♣ 4♢ 5♣ 7♢ 9♢ Q♣ K♢ K♠ H T P σ
110 110 105 105 100 1 105 100 110 100 110 105 0 0 0 0.00
110 110 105 105 1 100 105 100 110 100 110 105 0 0 0 0.00
110 110 105 105 100 100 105 1 110 100 110 105 0 0 0 1.00
110 110 105 105 100 100 105 100 110 1 110 105 0 0 0 1.00
110 110 105 -1 100 1 105 100 110 100 110 105 0 0 1 0.00
110 110 -1 105 100 1 105 100 110 100 110 105 0 0 1 0.00
-10 -10 105 105 100 -9 109 100 110 100 110 105 0 0 1 1.00
110 110 105 105 100 1 105 100 110 100 -10 109 0 0 1 0.00
110 110 -1 105 1 100 105 100 110 100 110 105 0 0 1 0.00
110 110 105 -1 1 100 105 100 110 100 110 105 0 0 1 0.00
110 110 105 105 1 100 105 100 110 100 -10 109 0 0 1 0.00
-10 -10 105 105 -9 100 109 100 110 100 110 105 0 0 1 1.00
110 110 105 105 100 100 105 1 110 100 -10 109 0 0 1 0.00
110 -10 109 105 100 100 105 -9 110 100 110 105 0 0 1 0.25
-10 110 105 109 100 100 105 -9 110 100 110 105 0 0 1 0.25
110 110 105 105 100 100 -1 1 110 100 110 105 0 0 1 0.00
-10 110 109 105 100 100 105 -9 110 100 110 105 0 0 1 0.25
110 -10 105 109 100 100 105 -9 110 100 110 105 0 0 1 0.25
110 110 -1 105 100 100 105 100 110 1 110 105 0 0 1 0.00
110 110 105 105 100 100 105 100 110 1 -10 109 0 0 1 1.00
110 110 105 105 100 100 -1 100 110 1 110 105 0 0 1 0.00
110 110 105 -1 100 100 105 100 110 1 110 105 0 0 1 0.00

Table 15: Near-Nash strategies for first turn of Figure 13’s deck

31

Figure 14: Left panel shows near-Nash vs. near-Nash, middle panel shows near-
Nash vs. Random, and the right panel shows Random vs. near-Nash

J # ♣ v std

= 0 ≤ 7 0.06 0.03
= 0 > 7 0.22 0.11
= 1 ≤ 5 0.06 0.02
= 1 > 5 0.25 0.12
= 2 ≤ 6 0.36 0.15
= 2 > 6 0.54 0.17
= 3 ≤ 5 0.58 0.15
= 3 > 5 0.76 0.10
= 4 ≤ 4 0.66 0.11
= 4 > 4 0.85 0.09

Table 16: Deck fair values vs. Jacks and Clubs held by Alex.

Another step in our analysis is to relate the fair value of a deck to key elements
of its composition. For example, it is clear that holding Jack cards or Club cards
provides a strategic advantage to the player. To investigate this relationship, we fit
decision trees to subsets of decks, each categorized by the number of Jack cards held
by Alex. We then examine how the decision tree branches based on the number of
Clubs held by Alex. Table 16 illustrates this relationship: the more Jacks or Clubs
Alex holds, the higher the fair value of the deck tends to be; providing supporting
evidence that our CFR algorithm has converged to near-Nash equilibrium strategies.

We next examine the convergence behavior of CFR. To this end, we measure the
mean squared error (MSE) between each intermediate strategy profile σ̄t and the
final CFR strategy vector. Since our approach computes strategies on a round-by-
round basis, we provide separate plots for each round to visualize the convergence. It
is important to note that, as shown in CodeSnippet 12, we use the DCFR algorithm
from [2] with the following parameters:

γ = 2, α = 1.5, β = 0.

Figure 15 shows the CFR convergence behavior. Finally, Figure 16 shows the σ
value for the first turn of Alex for Deck of Figure 13.

32

Figure 15: Convergence of CFR for 500 random decks. The plot shows the average
± standard deviation bands of the mean squared error (MSE) to the final CFR
vector, measured separately for each round. As observed, the last round converges
the fastest due to having the fewest nodes in the FT representation.

Figure 16: σ values for Alex’s first turn using the deck from Figure 13

33

4 Future Work

We conclude the paper by outlining two promising directions for future research.

First, we need to extend the current framework to the more realistic and chal-
lenging setting where players do not have access to the opponent’s hand information.
This extension could proceed in two stages. First, the possible opponent deck com-
positions can be narrowed down to a small set of plausible candidates. Then, lever-
aging the external sampling technique introduced in Section 2.9, one could apply
methods similar to those proposed in [1] to train general tree-based models and use
CFR to solve Pasur in the most general setting. The development and evaluation
of this more general framework are left to future work.

Second, it would be valuable to investigate whether a single XGBoost model can
be trained to generalize across multiple strategy profiles. This investigation remains
within the setting where both players have full knowledge of each other’s hands,
with the added complexity that multiple deck decompositions may be possible and
gradually revealed as the game progresses. A key challenge in this context arises
when decks share partial similarity—for example, two decks may have identical
first-round compositions but differ in later rounds. Such differences can influence
strategies even in the early stages, causing the same information sets to map to
different actions. To address this, strategy training must account for this additional
source of randomness.

Finally, another important direction for future work is to approximate the ex-
ploitability of the strategies trained in this paper. This would help validate conver-
gence toward a true Nash equilibrium. Exploitability quantifies how far a strategy
profile deviates from equilibrium, lower values indicate closer approximation to opti-
mal play. A natural starting point would be the simplified setting where both players
have full knowledge of each other’s hands. Once exploitability is well-understood
in this restricted scenario, approximation techniques can be applied to the general
case to estimate the exploitability of the learned strategies.

References

[1] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counter-
factual regret minimization. In International conference on machine learning,
pages 793–802. PMLR, 2019.

[2] Noam Brown and Tuomas Sandholm. Solving imperfect-information games via
discounted regret minimization. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 33, pages 1829–1836, 2019.

[3] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte
carlo sampling for regret minimization in extensive games. Advances in neural
information processing systems, 22, 2009.

[4] John F Nash Jr. Equilibrium points in n-person games. Proceedings of the
national academy of sciences, 36(1):48–49, 1950.

34

[5] Oskari Tammelin. Solving large imperfect information games using cfr+. arXiv
preprint arXiv:1407.5042, 2014.

[6] Hang Xu, Kai Li, Bingyun Liu, Haobo Fu, Qiang Fu, Junliang Xing, and Jian
Cheng. Minimizing weighted counterfactual regret with optimistic online mirror
descent. arXiv preprint arXiv:2404.13891, 2024.

[7] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.
Regret minimization in games with incomplete information. Advances in neural
information processing systems, 20, 2007.

5 Appendix: RepeatBlocks

RepeatBlocks is a generalization of torch.repeat interleave in which, instead of
repeating individual elements, entire blocks of elements are repeated. Each block
has a custom size and a custom repetition count. The idea is best explained through
an example. Consider the following

t org = [1,2,3,4,5,6], t bsz = [2,3,1],t rpt = [1,3,2]

Here t org,t bsz,t rpt are the input tensor, block sizes, and repeat counts respec-
tively. The desired output denoted by t org⊗t bsz t rpt is

t org⊗t bsz t rpt = [1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 6]

For convenience, let us denote t rbk = t org ⊗t bszt rpt. To construct t rbk, it
suffices to build the corresponding index tensor t idx.

t idx = [0, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 5, 5]

Note that t rbk = t org[t idx]. Next, consider the corresponding start indices of
each repeated block

t blk = [0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5],

It is emphasized that using input tensors, t blk is given as below.

t blk = (cat([0,t bsz[:-1]])⊗t rpt)⊗ (t bsz⊗t rpt︸ ︷︷ ︸
:=t bls

)

Deducting t blk from t idx, we arrive at the following tensor.

t pos = [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 0]

Next,

arange(t blk.shape[0])-t pos = [0, 0, 2, 2, 2, 5, 5, 5, 8, 8, 8, 11, 12]

where a simple examination shows that the RHS is equal

cumsum(cat([0, t bls[:-1]]))⊗t bls.

Putting pieces together, we arrive at Algorithm 13.

35

CodeSnippet 13 RepeatBlocks

1: Input t org, t bsz, t rpt

t org:input tensor, t bsz:blocks sizes, t rpt:repeat counts

Ex: t org = [1,2,3,4,5,6], t bsz = [2,3,1],t rpt = [1,3,2]

2: t bgn ← cat([0,t bsz[:-1]])⊗t rpt

Compute beginning indices of each output’s block

Ex: t bgn = [0, 2, 2, 2, 5, 5]

3: t bls ← t bsz⊗t rpt

Compute sizes of each output’s block

Ex: t bls = [2, 3, 3, 3, 1, 1]

4: t blk ← t bgn⊗t bls

t blk[i] = j i.e., output[i] belongs to block j

Ex: t blk = [0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5]

5: t csm ← cumsum(0,t bls[:-1])⊗t bls

Ex: t csm=[0, 2, 5, 8, 11, 12]⊗t bls=[0, 0, 2, 2, 2, 5, 5, 5, 8, 8, 8, 11, 12]

6: t pos ← arange(i blk)-t csm

Ex: t pos=[0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 0]

7: t idx ← t pos+t blk

Ex: t idx=[0, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 5, 5]

8: t rbk ← t org[t idx]

Ex: t rbk=[1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 6]

9: Output t rbk

denoted by t org⊗t bszt rpt

36

	Introduction and Background
	Extensive Games and CFR
	Pasur

	PyTorch-Based Framework
	Mask and Padding Tensors
	Game Tensor
	Actions
	Numerical Actions
	Jack Actions
	King Actions

	Compressed Game Tensor
	Score Tensors
	In-Hand Updates
	Between-Hand Updates
	Infoset Tensors
	External Sampling
	CFR Algorithm

	Experimental Evaluation
	Future Work
	Appendix: RepeatBlocks

