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1 Background

In BSM, assets’ prices are modeled as log-normal random variables and volality is assumed constant:

σ = σimplied

Implied volatilities are computed using market quotes of options in BSM pricing model and they
vary across different option contracts. In particular, volatility is not constant across strikes.
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To capture volatility skew, we may assume that volatility itself is a random variable. Local volatility
of the underlying asset is a deterministic function of asset price and time t i.e.,

σt = σ(t, S(t))

Dupire’s formula provides a closed-form expression for local volatility in the event of calibration
using market prices of European call options. In detail, suppose that a stock is governed by the
following SDE

dS(u) = rS(u)dt+ σ(u, S(u))S(u)dW̃ (u)

Denote by p̃(t, T, x, y) the transition density. In particular, time-zero price of a call expiring at
time T when S(0) = x is equal to

c(0, T, x,K) = e−rT

∫ +∞

K
(y −K)p̃(0, T, x, y)dy.

Dupire’s formula then asserts

cT (0, T, x,K) = −rKcK(0, T, x,K) +
1

2
σ2(T,K)K2cKK(0, T, x,K) (Dupire’s Formula)

In the following sections, we provide a complete proof of this formula. The proof relies on the two
preliminary results

• Closed-form formula for risk-neutral distribution using call option prices. See (Breeden-Litzenberger Formula)

• Kolmogrov forward equation. See (Forward Equation)

2 Implying the risk-neutral distribution

Consider S(t) to be the price of an underlying asset. With S(0) = x, we have that

c(0, T, x,K) = Ẽ
[
e−rT (S(T )−K)+

]
Let p̃(0, T, x, y) be the risk-neutral density in the y variable of the distribution of S(T ) where
S(0) = x. We thus have that

c(0, T, x,K) = e−rT

∫ +∞

K
(y −K)p̃(0, T, x, y)dy

Risk-neutral distribution is then obtained via the following equation

p̃(0, T, x,K) = erT cKK(0, T, x,K) (Breeden-Litzenberger Formula)
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Proof

Recall the following formula from elementary calculus.

d

dx

∫ g(x)

0
f(x, t)dt = f(x, g(x)) · g′(x) +

∫ g(x)

0

df(x, t)

dx
dt.

Note that∫ +∞

K
(y −K)p̃(0, T, x, y)dy =

∫ +∞

0
(y −K)p̃(0, T, x, y)dy −

∫ K

0
(y −K)p̃(0, T, x, y)dy

The first and second integral have derivative −
∫ +∞
0 p̃(0, T, x, y)dy and 0 respectively. Thus,

d

dK

∫ +∞

K
(y −K)p̃(0, T, x, y)dy = −

∫ +∞

0
p̃(0, T, x, y)dy

And,
d

dK

∫ K

0
(y −K)p̃(0, T, x, y)dy = −

∫ K

0
p̃(0, T, x, y)dy

Summing two pieces together, we obtain that

d

dK

∫ +∞

K
(y −K)p̃(0, T, x, y)dy = −

∫ +∞

K
p̃(0, T, x, y)dy

By definition,
∫ +∞
K p̃(0, T, x, y)dy = P̃ (S(T ) > K). Thus

cK(0, T, x,K) = −e−rT

∫ +∞

K
p̃(0, T, x, y)dy = −e−rT P̃ (S(T ) > K)

To see (Breeden-Litzenberger Formula), we need to show that

d

dK

∫ +∞

K
p̃(0, T, x, y)dy = −p̃(0, T, x,K),

which also follows from the calculus identity above. Indeed,∫ +∞

K
p̃(0, T, x, y)dy =

∫ +∞

0
p̃(0, T, x, y)dy −

∫ K

0
p̃(0, T, x, y)dy

The first integral is constant and hence has derivative zero. The second integral’s derivative is
equal to p̃(0, T, x,K).

3 Kolmogrov’s forward and backward equation

Kolmogrov forward and backward equations were both published by Andrey Kolmogrov in 1931.
Physicists were already aware of the forward equation under the name of Fokker-Plank equation.
The idea behind these two equations is summerized as below.

Let s > t. We have information on the state of random variable x at time t(resp. s) i.e.,
pt(x)( resp. ps(x)) and need to understand ps(x)( resp. pt(x)) in forward and backward eqs resp.
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3.1 Backward equation

Consider the following SDE

dX(u) = β(u,X(u))du+ γ(u,X(u))dW (u) where X(t) = x.

Denote by p(t, T, x, y) the transition density for the solution to this equation. In other words,

g(t, x) = Et,xh(X(T )) =

∫ +∞

0
h(y)p(t, T, x, y)dy.

We assume that p(t, T, x, y) = 0 for 0 ≤ t < T and y ≤ 0. Backward equation is as follows:

−pt(t, T, x, y) = β(t, x)px(t, T, x, y) +
1
2γ

2(t, x)pxx(t, T, x, y) (Backward Equation)

Proof

Recall that the following PDE holds

gt(t, x) + β(t, x)gx(t, x) +
1
2γ

2(t, x)gxx(t, x) = 0

We therefore have that∫ +∞

0
h(y)

[
pt(t, T, x, y) + β(t, x)px(t, T, x, y) +

1
2γ

2(t, x)pxx(t, T, x, y)
]
dy = 0.

Since this equation holds for any Borel-measurable function h(y), we must have that

pt(t, T, x, y) + β(t, x)px(t, T, x, y) +
1
2γ

2(t, x)pxx(t, T, x, y) = 0.

3.2 Forward equation

Fix x and t. Under the same assumption as in the backward case, the forward equation is as follows

∂

∂T
p(t, T, x, y) = − ∂

∂y
(β(t, y)p(t, T, x, y)) + 1

2

∂2

∂y2
(
γ2(T, y)p(t, T, x, y)

)
(Forward Equation)

Proof

Denote by

M(t, T, x, y) =
∂

∂T
p(t, T, x, y) +

∂

∂y
(β(t, y)p(t, T, x, y))− 1

2

∂2

∂y2
(
γ2(T, y)p(t, T, x, y)

)
By assumption M(t, T, x, y) is a continuous function of y. Therefore, for fixed t and T , if M ̸≡ 0,
then there exists 0 < a < b such that M(t, T, x, y) is strictly positive or strictly negative for
y ∈ (a, b). Consequently, if h is a smooth function such that

• h(y) = 0 for all y ̸∈ (a, b)

• h′(0) = h′(b) = 0
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• h(y) > 0 for all y ∈ (a, b),

then it must hold that ∫ b

0
h(y)M(t, T, x, y)dy ̸= 0.

It is not difficult to verify that such function h exists. For example, define

α(x) =

{
e−

1
x if x > 0

0 if x = 0

It is easy to check that α is a smooth function. Then α(1− x)α(1 + x) is a smooth function which
is identically zero outside (−1, 1) and positive inside (−1, 1). Itô formula gives

dh(X(u)) = h′(X(u))dX(u) + 1
2h

′′(X(u))dX(u)dX(u)

= h′(X(u))β(u,X(u))du+ h′(X(u))γ(u,X(u))dW (u) + 1
2h

′′(X(u))γ2(u,X(u))du

Integrating both sides from t to T gives

h(X(T )) = h(x) +

∫ T

t

(
h′(X(u))β(u,X(u)) + 1

2h
′′(X(u))γ2(u,X(u))

)
du+ Itô integral

Since X(u) has density p(t, u, x, y) in the y-variable, taking expectation from both sides gives∫ b

0
h(y)p(t, T, x, y)dy = h(x) +

∫ T

t

∫ b

0

(
h′(y)β(u, y)p(t, u, x, y) + 1

2h
′′(y)γ2(u, y)p(t, u, x, y)

)
dydu.

On the other hand, integration by parts gives∫ b

0
h′(y)β(u, y)p(t, u, x, y)dy +

∫ b

0
h(y)

∂

∂y
[β(u, y)p(t, u, x, y)]dy = h(y)β(u, y)p(t, u, x, y)|b0 = 0.

Here we used the fact that h(0) = h(b) = 0. Similarly since h′(0) = h′(b) = 0, we have that∫ b

0
h′′(y)γ2(u, y)p(t, u, x, y)dy+

∫ b

0
h′(y)

∂

∂y
[γ2(u, y)p(t, u, x, y)]dy = h′(y)γ2(u, y)p(t, u, x, y)|b0 = 0.

Another integration by parts gives∫ b

0
h′(y)

∂

∂y
[γ2(u, y)p(t, u, x, y)]dy+

∫ b

0
h(y)

∂2

∂y2
[γ2(u, y)p(t, u, x, y)]dy = h(y)

∂

∂y
[γ2(u, y)p(t, u, x, y)]|b0 = 0.

We thus have shown that∫ b

0
h′′(y)γ2(u, y)p(t, u, x, y)dy =

∫ b

0
h(y)

∂2

∂y2
[γ2(u, y)p(t, u, x, y)]dy.

Thus, we have that∫ b

0
h(y)p(t, T, x, y)dy = h(x)+

∫ T

t

∫ b

0
h(y)

(
− ∂

∂y
[β(u, y)p(t, u, x, y)] +

∂2

∂y2
[γ2(u, y)p(t, u, x, y)]

)
dydu.
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From elementary calculus d
dx

∫ g(x)
0 f(t)dt = f(g(x))) · g′(x). Differentiate both sides w.r.t T to

obtain∫ b

0
h(y)

∂

∂T
p(t, T, x, y)dy =

∫ b

0
h(y)

(
− ∂

∂y
[β(T, y)p(t, T, x, y)] +

∂2

∂y2
[γ2(T, y)p(t, T, x, y)]

)
dy

Rearranging gives ∫ b

0
h(y)M(t, T, x, y)dy = 0.

This is the desired contradiction. As h is positive on (a, b) and zero elsewhere; But, by assumption,
M(t, T, x, y) is strictly positive for every y ∈ (a, b) or strictly negative for every y ∈ (a, b).

4 Dupire’s formula

We show (Dupire’s Formula) under the following assumptions for tail of p̃(t, T, x, y)

• limy→∞(y −K)ryp̃(0, T, x, y) = 0

• limy→∞(y −K) ∂
∂y [σ

2(T, y)y2p̃(0, T, x, y)] = 0

• limy→∞ σ2(T, y)y2p̃(0, T, x, y) = 0

Proof

Derive w.r.t. T to obtain

cT (0, T, x,K) = −rc(0, T, x,K) + e−rT

∫ +∞

K
(y −K)

∂

∂T
p̃(0, T, x, y)dy.

Using (Forward Equation), we have that

cT (0, T, x,K) = −rc(0, T, x,K)

+ e−rT

∫ +∞

K
(y −K)

[
− ∂

∂y
(ryp̃(0, T, x, y)) + 1

2

∂2

∂y2
(
σ2(T, y)y2p̃(0, T, x, y)

)]
dy.

Integration by parts implies that∫ +∞

K
(y −K)

∂

∂y
(ryp̃(0, T, x, y)) dy +

∫ +∞

K
ryp̃(0, T, x, y)dy = (y −K)ryp̃(0, T, x, y)|+∞

K

By first regularity condition, right hand side is zero. Therefore,

−
∫ +∞

K
(y −K)

∂

∂y
(ryp̃(0, T, x, y)) dy =

∫ +∞

K
ryp̃(0, T, x, y)dy

Integration by parts and using the second regularity condition above gives∫ +∞

K
(y −K)

∂2

∂y2
(
σ2(T, y)y2p̃(0, T, x, y)

)
dy +

∫ +∞

K

∂

∂y

(
σ2(T, y)y2p̃(0, T, x, y)

)
dy

= (y −K)
∂

∂y

(
σ2(T, y)y2p̃(0, T, x, y)

)
|+∞
K

= 0.
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Therefore,∫ +∞

K
(y −K)

∂2

∂y2
(
σ2(T, y)y2p̃(0, T, x, y)

)
dy = −

∫ +∞

K

∂

∂y

(
σ2(T, y)y2p̃(0, T, x, y)

)
dy

= σ2(T,K)K2p̃(0, T, x,K)

Here we used the last regularity condition. We next have that

− rc(0, T, x,K)− e−rT

∫ +∞

K
(y −K)

∂

∂y
(ryp̃(0, T, x, y))

= −re−rT

∫ +∞

K
(y −K)p̃(0, T, x, y)dy + e−rT

∫ +∞

K
ryp̃(0, T, x, y)dy

= rKe−rT

∫ +∞

K
p̃(0, T, x, y)dy

= −rKcK(0, T, x,K)

Last equality is driven from (Breeden-Litzenberger Formula). Putting pieces together, we obtain
that

cT (0, T, x,K) = −rKcK(0, T, x,K) + 1
2e

−rTσ2(T,K)K2p̃(0, T, x,K)

= −rKcK(0, T, x,K) + 1
2σ

2(T,K)K2cKK(0, T, x,K).
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