
Exotic Options

Sina Baghal

June 9, 2024

Exotic options, a category of derivative securities, feature complex structures and unique
payoff mechanisms that differ from standard options like European and American options. These
financial instruments include a wide variety of types, such as barrier options, Asian options,
and lookback options, each with distinctive characteristics tailored to specific investor needs
and market conditions. Pricing exotic options involves advanced mathematical models and
computational techniques, often utilizing stochastic processes and partial differential equations
to capture the intricate behaviors of their underlying assets. This note provides some details on
the pricing of the following three types of exotic options based on geometric Brownian motion
assets.

• Barrier options (e.g., up & out)

• Lookback options

• Asian options

Contents

0 Definition 1

1 Reflection Principle 3

2 Partial Differential Equations 4
2.1 Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Delta-hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Lookback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Asian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Python Codes 6
3.1 Reflected Brownian mption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Lookback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Asian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

0 Definition

Throughout, denote the underlying asset dynamic by S(t) and let

Y (T ) := max
t≤T

S(t)

1



A Barrier option are a type of financial derivative whose payoff depends on whether the un-
derlying asset’s price reaches a specific predetermined level, called the barrier, within a certain
timeframe. If the asset’s price hits this barrier, the option is either activated (knock-in) or deacti-
vated (knock-out). These options can be either calls or puts and usually have lower premiums than
standard options due to their conditional nature. For instance, an up & out barrier call option has
the following payoff

V (T ) = (S(T )−K)+1Y (T )≤b (Barrier Payoff)

Plotting simulated paths generates Figure 0.

A Lookback option are a type of exotic financial derivative that allows the holder to ”look back”
over the life of the option and choose the optimal underlying asset’s price to determine the payoff.
There are two main types of lookback options:

• Fixed Lookback Options: The strike price is determined at the inception of the option, but
the payoff is based on the maximum or minimum underlying asset price during the option’s
life.

• Floating Lookback Options: The strike price is determined based on the maximum or min-
imum underlying asset price during the option’s life, providing the holder with the most
favorable price movement.

The payoff formula for a lookback call option expiring at time T is for instance:

• Fixed-Strike: max(Y (T )−K, 0)

• Floating-Strike: S(T )−mint≤T S(t) or Y (T )− S(T )

These options are more expensive than standard options because they offer a significant advantage
in eliminating the uncertainty of timing market highs and lows. In this note, we only consider the
following floating-strike lookback options with the following payoff:

V (T ) := Y (T )− S(T ) (Lookback Payoff)

2



An Asian option is a type of financial derivative where the payoff is determined by the average
price of the underlying asset over a specific period, rather than its price at a single point in time.
This averaging feature can reduce the option’s volatility and, typically, its premium compared to
standard options. We consider fixed-strike Asian call options whose payoff at time T is:

V (T ) =

(
1

T

∫ T

0
S(t)dt−K

)+

(Asian Payoff)

In this note, we provide insights into the pricing of these exotic options. Pricing barrier and
lookback options involves understanding the joint density of the maximum of a Brownian motion
W (t) over the interval [0, T ] and W (T ). This distribution is derived using the Reflection Principle,
which we define in the next section.

1 Reflection Principle

Consider a Brownian motion W (t) and define the hitting time τm as below:

τm = min{t : W (t) = m}

The reflected path is defined inside Python code inside Section 3.1. Figure 1 also illustrates how a
Brownian motion is reflected at the barrier level.

Reflection principle asserts that the reflected path is also a Brownian motion. For instance, Figure
1 illustrates that distribution of W (T ) and reflected path at T are both normal Gaussian.

3



Some simple manipulation computes the joint density of M(t) := maxs≤tW (s) and W (t)

P (M(t) ≥ m,W (t) ≤ ω) = P (W (t) ≥ 2m− ω) , w ≤ m,m ≥ 0.

Using this, we can compute analytic formula for the present value of (Barrier Payoff) and (Lookback Payoff)
via risk-neutral pricing formula

V (t) = Ẽ
[
e−r(T−t)V (T )|F(t)

]
(Risk-Neutral Pricing)

It is emphasized that no analytic formula is known for Asian options. For these options, we will
provide numerically friendly PDEs later below.

2 Partial Differential Equations

The primary purpose of this section is to provide numerically friendly partial differential equations
for Asian options. However, before that we will also provide PDEs for lookback and barrier options.

2.1 Barrier

Denote
RBarrier = {(t, x) : 0 ≤ t < T, 0 ≤ x ≤ B}

If a barrier call has not been knocked out by t and S(t) = x, then the pricing formula vB(t, x)
satisfies

vBt (t, x) + rxvBx (t, x) +
1

2
σ2x2vBxx(t, x) = rvB(t, x) ∀(t, x) ∈ RBarrier.

More importantly, the following boundary conditions must hold

vB(t, 0) = 0, 0 ≤ t ≤ T

vB(t, B) = 0, 0 ≤ t < T

vB(T, x) = (x−K)+, 0 ≤ x ≤ B

Regarding the second boundary condition, note that S(t) oscillates infinitely often immediately
right after t and, therefore, will almost surely hit the barrier before T .

4



2.1.1 Delta-hedging

One important note regarding the delta-hedging practice for Barrier options is that vB(t, x) is
discontinuous at the corner ofRBarrier at which delta (i.e., vBx (t, S(t))) and gamma (i.e., vBxx(t, S(t)))
are large negative values. Normal delta-hedging becomes impractical as the large volume of trades
renders significant the presumably negligible bid-ask spread. The common industry practice is to
price and hedge the up-and-out call as if the barrier were at a level slightly higher than B.

2.2 Lookback

Denote
RLookback = {(t, x, y) : 0 ≤ t < T, 0 ≤ x ≤ y}

Suppose S(t) = x and Y (t) = y. Then the pricing formula vL(t, x, y) satisfies the following PDE

vLt (t, x, y) + rxvLx (t, x, y) +
1

2
σ2x2vLxx(t, x, y) = rvL(t, x, y) ∀(t, x, y) ∈ RLookback.

More importantly, the following boundary conditions must hold

vL(t, 0, y) = e−r(T−t)y, 0 ≤ t ≤ T, y ≥ 0

vLy (t, y, y) = 0, 0 ≤ t < T, y > 0

vL(T, x, y) = y − x, 0 ≤ x ≤ y

The second boundary condition requires some explanation. It is important to note that dY (t) is
different from dS(t) and dt. This follows from the fact that Y (t) is monotonic and thus has zero
quadratic variation. Moreover, Y (t)’s flat regions has Lebesgue measure 1 and hence dY (t) ̸= Θ(t)dt
for any process Θ(t). It is straightforward to show that

dY (t)dY (t) = 0, dY (t)dS(t) = 0.

Itô calculus gives

de−rtvL(t, S(t), Y (t)) = e−rt[· · · ]dt+ e−rtσS(t)vLx (t, S(t), Y (t))dW̃ (t) + e−rtvLy (t, S(t), Y (t))dY (t)

Since dY (t) ̸= 0 if and only if S(t) = Y (t), the second boundary condition follows.

2.3 Asian

In this section, we consider fixed-strike Asian call with payoff (Asian Payoff). Denote

A(t) =

∫ t

0
S(u)du

The pair (S(t), A(t)) forms a Markov process, and Equation (Risk-Neutral Pricing) is rewritten as
follows.

V (t) = v(t, S(t), A(t))

Taking into account the fact that dA(t) = S(t)dt, Itô calculus gives

vt(t, x, a) + rxvx(t, x, a) + xva(t, x, a) +
1
2σ

2x2vxx(t, x, a) = rv(t, x, a), x ≥ 0.

5



Boundary conditions are also as below.

v(t, 0, a) = e−r(T−t)
( a

T
−K

)+
, 0 ≤ t < T, a ∈ R

lim
a↓−∞

v(t, x, a) = 0 , 0 ≤ t < T, x ≥ 0

v(T, x, a) =
( a

T
−K

)+
, x ≥ 0, a ∈ R

These boundary conditions however suffer from some few drawbacks:

1. There is a degeneracy created by absence of vaa(t, x, a)

2. It is unclear how v(t, x, a) behaves as x ↑ +∞ and a ↓ −∞

A change of numeraire and a dimensionality reduction argument provides a different PDE for
pricing Asian options. This idea is due to Vecer and is presented below in steps:

1. Construct a porfolio process X(t) such that V (T ) = X+(T ) and for deterministic γ(t)

dX(t) = γ(t)dS(t) + r (X(t)− γ(t)S(t)) dt

2. Consider the following PDE

gt(t, a) +
1
2σ

2 (γ(t)− a)2 gaa(t, a) = 0, 0 ≤ t < T, a ∈ R

With boundary conditions as below:

g(T, a) = a+, lim
a↓−∞

g(t, a) = 0, lim
a↑+∞

g(t, a)− a = 0, a ∈ R, 0 ≤ t < T.

The following is then true:

V (t) = S(t)g

(
t,
X(t)

S(t)

)
.

3 Python Codes

3.1 Reflected Brownian mption

6



import numpy as np

import matplotlib.pyplot as plt

# Parameters

T = 1.0 # Time interval

N = 1000 # Number of steps

dt = T / N # Time step

a = 1.0 # Barrier level

n_simulations = 1000 # Number of simulations

# Function to simulate Brownian motion

def simulate_brownian_motion(T, N, dt):

W = np.zeros(N+1)

for i in range(1, N+1):

W[i] = W[i-1] + np.sqrt(dt) * np.random.normal ()

return W

# Function to apply reflection principle

def reflect_brownian_motion(W, a):

tau = np.argmax(W > a) # First hitting time of level ’a’

if tau > 0:

W_reflected = W.copy()

W_reflected[tau:] = 2 * a - W[tau:]

import pdb;pdb.set_trace ()

return W_reflected

else:

return W

7



3.2 Barrier

8



import numpy as np

import matplotlib.pyplot as plt

def monte_carlo_barrier_option(S0 , K, T, r, sigma , B, option_type=’call’,

barrier_type=’up -and -out’, N_sim=10000 ,

N_steps=1000):

dt = T / N_steps

disc_factor = np.exp(-r * T)

# Generate paths

S = np.zeros((N_sim , N_steps + 1))

S[:, 0] = S0

for t in range(1, N_steps + 1):

Z = np.random.standard_normal(N_sim)

S[:, t] = S[:, t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt + sigma * np.

sqrt(dt) * Z)

# Apply barrier condition

if barrier_type == ’down -and -out’:

# Set payoff to 0 if path hits the barrier

payoff = np.maximum(S[:, -1] - K, 0) if option_type == ’call’ else np.

maximum(K - S[:, -1], 0)

payoff[np.min(S, axis=1) <= B] = 0

elif barrier_type == ’up-and -out’:

# Set payoff to 0 if path hits the barrier

payoff = np.maximum(S[:, -1] - K, 0) if option_type == ’call’ else np.

maximum(K - S[:, -1], 0)

payoff[np.max(S, axis=1) >= B] = 0

elif barrier_type == ’down -and -in’:

# Payoff is 0 unless path hits the barrier

hit_barrier = np.min(S, axis=1) <= B

payoff = np.where(hit_barrier , np.maximum(S[:, -1] - K, 0) if option_type

== ’call’ else np.maximum(K - S[:

, -1], 0), 0)

elif barrier_type == ’up-and -in’:

# Payoff is 0 unless path hits the barrier

hit_barrier = np.max(S, axis=1) >= B

payoff = np.where(hit_barrier , np.maximum(S[:, -1] - K, 0) if option_type

== ’call’ else np.maximum(K - S[:

, -1], 0), 0)

# Discount the expected payoff

price = disc_factor * np.mean(payoff)

return price

# Parameters

S0 = 100 # Initial stock price

K = 100 # Strike price

T = 1.0 # Time to maturity

r = 0.07 # Risk -free rate

9



sigma = 0.1 # Volatility

B = 105 # Barrier level

N_sim = 10000 # Number of simulations

# Price the up -and -out call option

price = monte_carlo_barrier_option(S0 , K, T, r, sigma , B, option_type=’call’,

barrier_type=’up -and -out’, N_sim=N_sim)

print(f"The price of the up -and -out call option is: {price:.2f}")

# Prints 0.07

10



3.3 Lookback

11



import numpy as np

def monte_carlo_lookback_option(S0 , T, r, sigma , option_type=’call’, N_sim=10000 ,

N_steps=1000):

dt = T / N_steps

disc_factor = np.exp(-r * T)

# Generate paths

S = np.zeros((N_sim , N_steps + 1))

S[:, 0] = S0

for t in range(1, N_steps + 1):

Z = np.random.standard_normal(N_sim)

S[:, t] = S[:, t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt + sigma * np.

sqrt(dt) * Z)

# Calculate payoff

if option_type == ’call’:

max_S = np.max(S, axis=1)

payoff = max_S - S[:, -1]

elif option_type == ’put’:

min_S = np.min(S, axis=1)

payoff = S[:, -1] - min_S

# Discount the expected payoff

price = disc_factor * np.mean(payoff)

return price

# Parameters

S0 = 100 # Initial stock price

T = 1.0 # Time to maturity

r = 0.05 # Risk -free rate

sigma = 0.2 # Volatility

N_sim = 10000 # Number of simulations

# Price the lookback call option

price_call = monte_carlo_lookback_option(S0 , T, r, sigma , option_type=’call’,

N_sim=N_sim)

print(f"The price of the lookback call option is: {price_call :.2f}")

# Price the lookback put option

price_put = monte_carlo_lookback_option(S0 , T, r, sigma , option_type=’put’, N_sim=

N_sim)

print(f"The price of the lookback put option is: {price_put :.2f}")

# The price of the lookback call option is: 13.88

# The price of the lookback put option is: 16.96

12



3.4 Asian

13



import numpy as np

def monte_carlo_asian_option(S0 , K, T, r, sigma , option_type=’call’, N_sim=10000 ,

N_steps=1000):

dt = T / N_steps

disc_factor = np.exp(-r * T)

# Generate paths

S = np.zeros((N_sim , N_steps + 1))

S[:, 0] = S0

for t in range(1, N_steps + 1):

Z = np.random.standard_normal(N_sim)

S[:, t] = S[:, t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt + sigma * np.

sqrt(dt) * Z)

# Calculate arithmetic average price

average_price = np.mean(S[:, 1:], axis=1) # Exclude the initial price

# Calculate payoff

if option_type == ’call’:

payoff = np.maximum(average_price - K, 0)

elif option_type == ’put’:

payoff = np.maximum(K - average_price , 0)

# Discount the expected payoff

price = disc_factor * np.mean(payoff)

return price

# Parameters

S0 = 100 # Initial stock price

K = 100 # Strike price

T = 1.0 # Time to maturity

r = 0.05 # Risk -free rate

sigma = 0.2 # Volatility

N_sim = 10000 # Number of simulations

N_steps = 1000 # Number of time steps

# Price the Asian call option with arithmetic average

price_call = monte_carlo_asian_option(S0 , K, T, r, sigma , option_type=’call’,

N_sim=N_sim , N_steps=N_steps)

print(f"The price of the Asian call option with arithmetic average is: {price_call

:.2f}")

# Price the Asian put option with arithmetic average

price_put = monte_carlo_asian_option(S0 , K, T, r, sigma , option_type=’put’, N_sim=

N_sim , N_steps=N_steps)

print(f"The price of the Asian put option with arithmetic average is: {price_put :.

2f}")

#The price of the Asian call option with arithmetic average is: 5.84

#The price of the Asian put option with arithmetic average is: 3.38

14


	Definition
	Reflection Principle
	Partial Differential Equations
	Barrier
	Delta-hedging

	Lookback
	Asian

	Python Codes
	Reflected Brownian mption
	Barrier
	Lookback
	Asian


