
Learning Quantitative Finance

Sina Baghal

April 4, 2024

I collect my notes here as I continue with my self-studies in quantitative finance.

Comments are welcome! You can reach me at quantfinancelearner@gmail.com.

Contents

0 Probability Theory Basics 3

1 Risk-Neutral Pricing 4
1.1 Forwards and Futures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Greeks 6

3 Connections with Partial Differential Equations 7

4 Exotic Options 11
4.1 Exotic Options Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 American Derivative Securities 14
5.1 Perpetual American put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Finite Expiration American Put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 American Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Change of Numeraire 20
6.1 Multidimensional market model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Numeraire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Foreign & domestic risk-neutral measures . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4 Domestic risk-neutral measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 FACT TWO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.6 Option pricing with a random interest rate . . . . . . . . . . . . . . . . . . . . . . . 24

7 Term-Structure Models 27
7.1 T-forward measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Default-free setting (ref: notes by Grasselli and Hurd) 32
8.1 Defaultable setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



9 XVA 36

10 SABR Model 37

11 Heston Model 40
11.1 Risk-neutral measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

12 Volatility Clustering 42

Index 43

2



0 Probability Theory Basics

Martingale: E[M(t)|F(s)] = M(s) for all 0 ≤ s ≤ t

Super-Martingale: E[M(t)|F(s)] ≤ M(s) for all 0 ≤ s ≤ t

Sub-Martingale: E[M(t)|F(s)] ≥ M(s) for all 0 ≤ s ≤ t

Markov Property: Estimate of f(X(t)) made at time s depends only on the process value X(s),
i.e.,

E[f(X(t))|F(s)] = g(X(s))

Independence Lemma: If X is G-measurable random variable and Y is independent of G, then

E[f(X,Y )|G] = g(X) where g(x) := Ef(x, Y ).

Take out What is Known: From Independence Lemma, it follows that:

X is G-measurable ⇒ E[XY |G] = XE[Y |G].

Independence: Set Y = 1 in Take out What is Known: if X is integrable and independent of
G, then E[X|G] = EX.

Iterated Conditioning: E[E[X|G]|H] = E[X|H] if H ⊆ G.

Measurability: E[X|G] is G-measurable.

Partial Averaging: Z = E[X|G] satisfies the following∫
A
ZdP =

∫
A
XdP, ∀A ∈ G.

Vice versa, any Z satisfies the preceding set of equations must be equal to E[X|G].
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1 Risk-Neutral Pricing

First fundamental theorem of asset pricing If a market model has a risk-neutral probability
measure, then it does not admit arbitrage.

Second fundamental theorem of asset pricing Consider a market model that has a risk-
neutral probability measure. The model is complete if and only if the risk-neutral probability
measure is unique.

1.1 Forwards and Futures

T -forward price at time t Value of K that makes the forward contract’s no-arbitrage price 0
at time t

Theorem: K = S(t)
B(t,T )

Proof (No-arbitrage)

• At time t:

– Sell forward contract

– Short S(t)
B(t,T ) zero-coupon bonds

– Buy one share of stock

• At time T :

– Give stock & receive K

– Pay S(t)
B(t,T ) to cover zero-coupon bond

Payoff is equal K − S(t)
B(t,T ) .

Default risk with forward contracts Suppose t1 < t2 and the agent enters into a forward
contract at t1. Value of this contract at t2 is

1

D(t2)
Ẽ
[
D(T )

(
S(T )− S(t1)

B(t1, T )

)
|F(t2)

]
= S(t2)−

S(t1)

B(t1, T )
· 1

D(t2)
Ẽ [D(T )|F(t2)]

= S(t2)− S(t1) ·
B(t2, T )

B(t1, T )

If interest rate is constant r, then

S(t2)− S(t1) ·
B(t2, T )

B(t1, T )
= S(t2)− S(t1) · er(t2−t1)

If asset price grows faster than the interest rate, then forward contract gains value. Otherwise, its
value becomes negative. This raises the risk of default. One potential solution is to open and close
forward contracts frequently. Lack of liquidity renders this idea useless. Moreover, this solution
does not provide any hedging utility.
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Future prices If the agent holds future position between tk and tk+1, then at time tk+1, he would
receive a payment

FutS(tk+1, T )− FutS(tk, T )

This is called marking to margin. The following two key points must hold:

• FutS(T, T ) = S(T )

• At each time tk, the value of the payment to be received at tk+1 is zero.

From the second item, we have that

0 =
1

D(tk)
Ẽ [D(tk+1) (FutS(tk+1, T )− FutS(tk, T )) |F(tk)]

We assume the interest rate is constant within two consecutive time stamps. Thus

D(tk+1) = exp

(
−
∫ tk+1

0
R(u)du

)

= exp

−
k∑

j=0

R(tj)(tj+1 − tj)

 ∈ F(tk)

Therefore,
Ẽ [FutS(tk+1, T )|F(tk)] = FutS(tk, T )

Therefore, using bullet point I, we have

FutS(tk, T ) = Ẽ [S(T )|F(tk)]

Theorem Value of a long(or a short) position to be held between an interval of time is 0.

Valuation of a cash flow Consider an asset that pays C(u) ∈ F(u). Holding one share of this
asset, produces the following differential

dX(u) = dC(u) +R(u)X(u)du.

If X(t) = 0, then the value of the cash flow received between t and T is

1

D(t)
Ẽ
[∫ T

t
D(u)dC(u)|F(t)

]
, 0 ≤ t ≤ T.

Future-Forward spread If interest rate is constant then FutS(0, T ) = ForS(0, S). However,

For
S
(0, S)− FutS(0, T ) =

S(0)

B(0, T )
− Ẽ[S(T )]

=
Ẽ[D(T )S(T )]

B(0, T )
− Ẽ[S(T )]

=
1

B(0, T )

[
Ẽ[D(T )S(T )]− Ẽ[D(T )]Ẽ[S(T )]

]
=

1

B(0, T )
C̃ov (D(T ), S(T ))
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2 Greeks

Consider price of an option P (t, S, σ, r). Here S, r and σ indicates stock price, interest rate and
implied volatility resp. Second order Taylor expansion of P is as follows.

dP =
dP

dt︸︷︷︸
:=Θ

dt+
dP

dS︸︷︷︸
:=∆

dS +
dP

dσ︸︷︷︸
:=v

dσ +
dP

dr︸︷︷︸
:=ρ

dr + 1
2

d2P

dS2︸︷︷︸
:=Γ

dSdS + 1
2

d2P

dSdσ︸ ︷︷ ︸
:=Vanna

dSdσ + 1
2

d2P

dσ2︸︷︷︸
:=Volga

dσdσ + 1
2

d2P

dSdt︸ ︷︷ ︸
:=Charm

dSdt+ re

Moneyness & ∆ ∆C ∈ [0, 1] and ∆P ∈ [−1, 0]. + for long positions and - for short positions.

• ATM Call ∆ ≈ 0.5

• ITM Call ∆ ⪆ 0.5

• OTM Call ∆ ⪅ 0.5

- ATM Put ∆ ≈ −0.5

- ITM Put ∆ ⪅ −0.5

- OTM Put ∆ ⪆ 0.5

ρ Sign Long options (long call & short put) have + ρ. Short options have - ρ. Indeed, ρ is + for
purchased calls as higher interest rates increase call premiums.
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3 Connections with Partial Differential Equations

Two ways to price a derivative security

• Monte Carlo Simulation

• Numerically solve a PDE

Question: How to connect risk-neutral pricing with partial differential equations?

Stochastic differential equations (SDE) are used to model asset prices.

dX(u) = β(u,X(u))︸ ︷︷ ︸
drift

du+ γ(u,X(u))︸ ︷︷ ︸
diffusion

dW (u) with X(t) = x︸ ︷︷ ︸
initial condition

(SDE)

Theorem (Markov property): Solutions to SDE have Markov property.

Example (One-dimensional linear SDE)

dX(u) = (a(u) + b(u)X(u)) du+ (γ(u) + σ(u)X(u)) dW (u) with X(t) = x.

Solutions to this SDE have closed-form formula. See Exercise 6.1. It is emphasized that to ensure
solutions’ Markov property, a(u), b(u), γ(u), and σ(u) are non-random.

Example (Geometric Brownian Motion):

β(u, x) = αx, γ(u, x) = σx.

dS(u) = αS(u)du+ σS(u)dW (u)

S(T ) = x · eσ(W (T )−W (t))+
(
α−1

2σ
2
)
(T−t)

Interest rate models

dR(u) = β(u,R(u))du+ γ(u,R(u))dW̃ (u) (Interest Rate SDE)

Example (Hull-White interest rate model)

dR(u) = (a(u)− b(u)R(u)) du+ σ(u)dW̃ (u)

This SDE has closed-form formula. In particular, R(T ) is normally distributed and hence R(T ) < 0
with positive probability; a draw-back of HW model.
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Example (CIR interest rate model)

dR(u) = (a− bR(u)) du+ σ
√
R(u)dW̃ (u)

MGF of R(u) is obtained using Ornstein-Uhlenbeck SDE:

dXj(t) = − b

2
Xj(t)dt+

1

2
σdWj(t).

Letting R(t) =
∑d

j=1X
2
j (t) and B(t) =

∑d
j=1

∫ t
0

Xj(s)√
R(s)

dWj(s). Then

dR(u) = (a− bR(u)) du+ σ
√
R(u)dB(u)

Let X be a solution for (SDE). Denote

g(t, x) := Et,xh(X(T ))

Here the initial condition is X(t) = x.

Theorem (Markov Property) With initial condition X(0) = x0, it holds

Et,xh(X(T )) = E0,x0 [h(X(T ))|X(t) = x]

Feynman-Kac Connects an SDE with a PDE.

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0 where g(T, x) = h(x), ∀x.

Denote
f(t, x) = E

[
e−r(T−t)h(X(T ))

]
Discounted Feynman-Kac

ft(t, x) + β(t, x)fx(t, x) +
1

2
γ2(t, x)fxx(t, x) = rf(t, x) where f(T, x) = h(x), ∀x.

Example (Options on Geometric Brownian Motion)

• h(S(T )): Payoff at time T

• Underlying asset: dS(u) = rS(u)du+ σS(u)dW̃ (u)

• Price at time t: v(t) = Ẽ
[
e−r(T−t)h(S(T ))|F(t)

]
Discounted Feynman-Kac produces BSM again.

vt(t, x) + rxvx(t, x) +
1

2
σ2x2vxx(t, x) = rv(t, x).

Here σ could be random and depend on t, x.
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Discount process

D(t) = e−
∫ t
0 R(s)ds

Money market account price process

M(t) =
1

D(t)
= e

∫ t
0 R(s)ds

Bond prices The following holds

D(t)B(t, T ) = Ẽ [D(T )|F(t)]

B(t, T ) = Ẽ
[
e−

∫ T
t R(s)ds|F(t)

]
f(t, R(t)) := B(t, T ) = e−Y (t,T )(T−t)

Yield Y (t, T ) yield between time t and T

R satisfies (Interest Rate SDE), D(t)B(t, T ) is Markov. Discounted Feynman-Kac gives

ft(t, r) + β(t, r)fr(t, r) +
1

2
γ2(t, r)frr(t, r) = rf(t, r) where f(T, r) = 1, ∀r.

Option on bonds 0 ≤ t ≤ T1 ≤ T2. A call option with expiry T1 to buy a bond with expiry at
T2. The following is true.

c(t, R(t)) = Ẽ
[
e−

∫ T
t R(s)ds · (f(T1, R(T1))− k)+

]
The following PDE holds

ct(t, r) + β(t, r)cr(t, r) +
1

2
γ2(t, r)crr(t, r) = rc(t, r) where c(T1, r) = (f(T1, r)−K)+ , ∀r.

This is the same PDE as for bond prices only with different terminal conditions.

Multidimensional Feynman-Kac For i = 1, 2

dXi(u) = βi(u,X1(u), X2(u))du+ γi1(u,X1(u), X2(u))dW1(u) + γi2(u,X1(u), X2(u))dW2(u).

Denote
g(t, x1, x2) = Et,x1,x2h(X1(T ), X2(T )) where Xi(t) = xi.

Then

gt + β1gx1 + β2gx2 +
1

2

(
γ211 + γ212

)
gx1x1 +

1

2

(
γ221 + γ222

)
gx2x2 + (γ11γ21 + γ12γ22) gx1x2 = 0.
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Example (Asian option) Asian options are path-independent. Their pay-off is

v(T ) =

(
1

T

∫ T

0
S(u)du−K

)+

Denote

Y (t) :=

∫ t

0
S(u)du ⇒ dY (u) = S(u)du.

For 0 ≤ t ≤ T

v(t, S(t), Y (t)) = Ẽ

[
e−r(T−t)

(
1

T
Y (T )−K

)+

|F(t)

]
Y (u) is not Markov, but (S(u), Y (u)) is. Multi-dimensional Feynman-Kac gives

vt(t, x, y) + rxvx(t, x, y) + xvy(t, x, y)︸ ︷︷ ︸
new term

+
1

2
σ2x2vxx(t, x, y) = rv(t, x, y).

Termination condition is

v(T, x, y) =
( y

T
−K

)+
.

Kolmogorov backward and forward equations Consider the following SDE

dX(u) = β(u,X(u))du+ γ(u,X(u))dW (u) where X(t) = x.

Denote by p(t, T, x, y) the transition probability. Backward equations fix forward variables i.e., T
and y and derive w.r.t backward variables i.e., t and x:

−pt(t, T, x, y) = β(t, x)px(t, T, x, y) +
1
2γ

2(t, x)pxx(t, T, x, y)

Forward equation do the reverse:

∂

∂T
p(t, T, x, y) = − ∂

∂y
(β(t, y)p(t, T, x, y)) + 1

2

∂2

∂y2
(
γ2(T, y)p(t, T, x, y)

)
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4 Exotic Options

Exotic Options whose payoffs depend on path of the underlying asset are called path-dependent

Example Three types of exotic options on geometric Brownian motions assets are considered:

• Barrier (e.g., up & out) options - Explicit pricing formula D
• Lookback options - Explicit pricing formula D
• Asian options - Explicit pricing formula X - Numerical friendly PDE D

Reflection Principle The first two options are priced analytically using reflection principle.

P (τm ≤ t,W (t) ≤ ω) = P (W (t) ≤ 2m− ω) ω ≤ m,m > 0.

Using reflection principle, we can compute the joint density of M(t) and W (t)

P (M(t) ≥ m,W (t) ≤ ω) = P (W (t) ≥ 2m− ω) , w ≤ m,m ≥ 0.

From S(t) = rS(t)dt+ σS(t)dW̃ (t), obtain the following

S(t) = S(0)eσŵ(t), α =
1

σ

(
r − σ2

2

)
Applying a change of measure argument, we could compute joint density of M̂(t) and Ŵ (t).

Ŵ (t) = αt+W (t), M̂(t) = max
0≤s≤t

Ŵ (s).

Payoffs Payoff functions for barriers and lookbacks are computed as follows:

Vbarrier(T ) =
(
S(0)eσŴ (t) −K

)
1{Ŵ (T )≥k,M̂(T )≤b}

Vlookback(T ) = S(0)
(
eσM̂(T ) − eσŴ (T )

)
11



Boundary conditions

RBarrier = {(t, x) : 0 ≤ t < T, 0 ≤ x ≤ B}
vB(t, 0) = 0, 0 ≤ t ≤ T

vB(t, B) = 0, 0 ≤ t < T

vB(T, x) = (x−K)+, 0 ≤ x ≤ B

RLookback = {(t, x, y) : 0 ≤ t < T, 0 ≤ x ≤ y}
vL(t, 0, y) = e−r(T−t)y, 0 ≤ t ≤ T, y ≥ 0

vLy (t, y, y) = 0, 0 ≤ t < T, y > 0

vL(T, x, y) = y − x, 0 ≤ x ≤ y

Partial Differential Equations The call has not been knocked out by t and S(t) = x

vBt (t, x) + rxvBx (t, x) +
1

2
σ2x2vBxx(t, x) = rvB(t, x) ∀(t, x) ∈ RBarrier.

vLt (t, x, y) + rxvLx (t, x, y) +
1

2
σ2x2vLxx(t, x, y) = rvL(t, x, y) ∀(t, x, y) ∈ RLookback.

Delta-hedging for Barriers v(t, x) is discontinuous at the corner of RBarrier at which delta
(i.e., vx(t, S(t))) and gamma (i.e., vxx(t, S(t))) are large negative values. Normal delta-hedging
becomes impractical as the large volume of trades renders significant the presumably negligible
bid-ask spread.The common industry practice is to price and hedge the up-and-out call as if the
barrier were at a level slightly higher than B.

dY(t) dY (t) is different from dS(t) and dt. This follows from the fact that Y (t) is monotonic
and thus has zero quadratic variation. Moreover, Y (t)’s flat regions has Lebesgue measure 1 and
hence dY (t) ̸= Θ(t)dt for any procecss Θ(t). The following holds

dY (t)dY (t) = 0

dY (t)dS(t) = 0

de−rtv(t, S(t), Y (t)) = e−rt[· · · ]dt+ e−rtσS(t)vx(t, S(t), Y (t))dW̃ (t) + e−rtvy(t, S(t), Y (t))dY (t)

dY (t) ̸= 0 iff S(t) = Y (t) ⇒ 2nd boundary condition

4.1 Exotic Options Summary

• Binary(Digital) (2)

– Cash-Or-Nothing: Payoff = X if S(T ) > K else 0

– Asset-Or-Nothing: Payoff = S(T ) if S(T ) > K else 0

• Barrier (4)
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– Up-and-Out Or Up-and-In

– Down-and-Out Or Down-and-In

• Asian (2)

– Fixed-Strike (average price used in place of asset price): Payoff 4Call = max(AT −K, 0)

– Floating-Strike (average price used in place of strike): Payoff 4Call = max(ST −AT , 0)

• Lookback (2)

– Fixed-Strike: Payoff 4Call = max(Smax −K, 0)

– Floating-Strike: Payoff 4Call = max(S(T )− Smin, 0)

• Bermuda There are predetermined exercise dates before expiry. t1, · · · , tn = T .

• Spread Payoff 4Call: max{(S1(T )− S2(T ))−K, 0}, 4Put: max{K − (S1(T )− S2(T )), 0}

• Range Payoff 4Call: max{(max(T )−min(T ))−K, 0}, 4Put: max{K−(max(T )−min(T )), 0}

• Basket Payoff 4Call: max{
∑N

i=1wiSi(T )−K, 0)}

• Chooser At a predetermined date, owner decides between Put or Call

• Compound Ex: Call of Call. Payoff = max{C(STc ,K, T − Tc)−Kc, 0} (Tc < T )

• Worst of or Best of Ex: Worst of Put. Payoff = max{K −min(S1(T ), · · · , Sn(T ))︸ ︷︷ ︸
worst of part

, 0}

• Extendable Owner has the right to extend the maturity date

• Cliquet Series of consecutive forward starting ATM options
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5 American Derivative Securities

American option Owner can exercise at any time up to and including the expiration date

American call Early exercise for a call on a stock paying no dividend is worthless

American put Early exercise premium may be substantial

Bermudan Early exercise is possible at only contractually prespecified dates

Intrinsic value Payoff of an American option could not be less than the one associated with its
immediate exercise. This is called the intrinsic value of the option.

Supermartingale property Discounted price of an American option is a supermartingale (i.e.,
tend to fall) under the risk neutral measure. During the time which is not optimal to exercise, the
discounted price process behaves as a martingale though

Optimal exercise time Worst time for the seller as well as the best time for the owner to
exercise

Stopping time A stopping time τ is a random variable taking values in [0,∞] and satisfying

{τ ≤ t} ∈ F(t) for all t ≥ 0.

Optional sampling A stopped martingale(resp. supermartingale, submartingale) is a martin-
gale(resp. supermartingale, submartingale).

5.1 Perpetual American put

Perpetual American put Price of a perpetual American put is defined as below

v∗(S(0)) = max
τ∈T

Ẽ
[
e−rτ (K − S(τ))

]
Here T denotes the set of all stopping time.

Hedging v∗(S(0)) is the initial capital required to hedge a short position in the American put
regardless of the exercise strategy used by the owner.

Level L∗ There is no expiration and optimal exercise strategy should only depend on the value
S(t). We guess (and prove later) that the optimal exercise strategy is as follows.

Exercise once S(t) ≤ L∗

If S(0) < L∗ then the owner exercises immediately and receives the intrinsic value.
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Laplace transform for first passage time of drifted Brownian motion Denote X(t) =
µt+ W̃ (t) and set

τm = min{t ≥ 0 : X(t) = m}

Set τm = ∞ if X(t) never reaches m. The following is true for λ > 0.

Ẽe−λτm = e−m(−µ+
√

µ2+2λ)

Letting λ ↓ 0,
P̃ (τm < +∞) = emµ−m|µ|

Let L < K and set {
τL = 0 if S(0) ≤ L

τL = min{t ≥ 0 : S(t) = L} if S(0) > L

The value of the put under this strategy is computed as follows.

vL(S(0)) = (K − L) Ẽe−rτL(S(0))

Value of vL(S(0)) Using the Laplace transform mentioned above, we obtain that

vL(S(0)) =

K − S(0) 0 ≤ S(0) ≤ L

(K − L)
(
S(0)
L

)− 2r
σ2

S(0) ≥ L.

From Figure above, it is clear that vL(x) is maximized for each fix x for L∗ which satisfies the
smooth pasting condition i.e.,

v′L∗(L∗+) = v′L∗(L∗−) = −1.

L∗ is computed explicitly below.

L∗ =
2r

2r + σ2
K

15



The following is true.

rvL∗(x)− rxv′L∗(x)−
1

2
σ2x2v′′L∗(x) =

{
0 if x > L∗

rK if 0 ≤ x < L∗

Linear complimentary conditions (satisfied by vL∗(x)) are as below.

• v(x) ≥ (K − x)+ for all x ≥ 0

• rv(x)− rxv′(x)− 1
2σ

2x2v′′(x) ≥ 0 for all x ≥ 0

• At least one of the above two inequalities holds with equality for each x ≥ 0

Supermartingale for e−rtvL∗(S(t)) The following is true.

de−rtvL∗(S(t)) = −e−rtrK1{S(t)<L∗}︸ ︷︷ ︸
≤0

dt+ e−rtσS(t)v′L∗(S(t))dW̃ (t).

In particular,

de−r(t∧τL∗ )vL∗(S(t ∧ τL∗)) = e−r(t∧τL∗ )σS(t ∧ τL∗)v′L∗(S(t ∧ τL∗))dW̃ (t).

Optimal strategy vL∗ Let τ be the set of all stopping times (including τ = +∞). Then

vL∗(x) = max
τ∈T

Ẽ
[
e−rτ (K − S(τ))

]
For τ = +∞, the argument is defined as zero. It is emphasized that + sign is omitted from the
payoff function.

Cash consumption Hedging short American put options is similar to the European version
during the time that the discounted asset price is a martingale. If the optimal exercise stopping
time is missed, the discounted asset price is only a supermartingale and hence the agent can consume
cash while maintaining the hedge. In other words,

dX(t) = ∆(t)dS(t) + r (X(t)−∆(t)S(T )) dt− C(t)dt

Here
C(t) = rK1{S(t)<L∗}

In words, X(t) = K −S(t) before exercise where K is invested in the money market and one share
of stock is short. Should the owner exercise, the agent receives S(t) and pays back K from his
money market account.

Importance of linear complimentary conditions The first two conditions are required to
satisfy put’s seller i.e., hedge is possible

• V (t) ≥ (K − S(t))+

• e−rtV (t) is a supermartingale under P̃

The last condition is needed to ensure the owner that there exists an exercise strategy which
captures option’s full value.

• V (0) = Ẽ
[
e−rτ∗ (K − S(τ∗))

+]
16



Continuation set The owner should not exercise while inside

C = {x ≥ 0 : vL∗(x) > (K − x)+}

Stopping set The owner should exercise once inside

S = {x ≥ 0 : vL∗(x) = (K − x)+}

5.2 Finite Expiration American Put

Tt,T a stopping time in Tt,T stops at u ∈ [t, T ] based on the path of stock price between [t, u]

Pricing Price of American put expires at T at time t is computed as below

v(t, x) = max
τ∈Tt,T

Ẽ
[
e−r(τ−t) (K − S(τ)) |S(t) = x

]
Level L(T − t) Due to T < +∞, level L∗ now depends on time to expiration. It is known that
L(τ) decreases as τ increases.

Linear complimentary conditions From the figure above, notice the difference inside the linear
complimentary conditions. The smooth pasting condition is also as below.

vx(t, x+) = vx(t, x−) = −1 for x = L(T − t), 0 ≤ t < T.

Smooth pasting condition does not hold at T , but L(0) = K.

17



Finite difference scheme Via equations below, one solves for v(t, x) and L(T−t) simultaneously.

• rv(t, x)− vt(t, x)− rxvx(t, x)− 1
2σ

2x2vxx(t, x) = 0 for x ≥ L(T − t)

• v(t, x) = K − x for 0 ≤ x ≤ L(T − t)

• vx(t, x+) = vx(t, x−) = −1 for x = L(T − t), 0 ≤ t < T

• limx→+∞ v(t, x) = 0 i.e., more valuable stock ≡ less valuable put

5.3 American Call

Main Lemma Let h ≥ 0 and convex. Payoff upon exercise is h(S(t)). The discounted intrinsic
value i.e., e−rth(S(t)) is a submartingale.

Not-paying dividend assets Early exercise for American derivative securities for these assets
with payoff h(S(T )) is useless.

Ẽ
[
e−r(T−u)h(S(T ))|F(u)

]
︸ ︷︷ ︸

European call payoff with start S(u) expiry at T

≥ h(S(u))︸ ︷︷ ︸
intrinsic value at time u

In particular, American call and European call (expiry, strike held equal) have the same price.
Indeed, e−rt(S(t)−K)+ is a submartingale and hence tend to rise.

Dividend paying assets Consider the dividend payments as below

0 < t1 < t2 < · · · < tn < T.

Optimal exercise time The only potential exercise time is right before a dividend payment.

S(tj)︸ ︷︷ ︸
asset price after dividend payment

= S(tj−)︸ ︷︷ ︸
asset price just prior to dividend payment

− ajS(tj−)︸ ︷︷ ︸
dividend payment

The optimal exercise time is immediately prior to the dividend payment at the smallest time tj for
which S(tj−)−K exceeds cj(tj , (1− aj)S(tj−)).

Call value before dividend payment Right before tn, the agent either exercises, in which case
receives S(tn−)−K, or declines to exercise, in which case the dividend is paid and the asset price
drops to (1 − an)S(tn−). In the latter case, the call value for tn < t < T is determined through
Black-Scholes-Merton formula as below.

∂

∂tn
cn(t, x) + rx

∂

∂x
cn(t, x) +

1

2
σ2x2

∂2

∂x2
cn(t, x) = rcn(t, x), tn ≤ t < T, x ≥ 0.

Terminal condition is
cn(T, x) = (x−K)+, x ≥ 0.

Therefore, the call value at tn is equal to hn(S(tn−)) where

hn(tn, x) = max{x−K, cn (tn, (1− an)x)}, x ≥ 0.

18



Convexity of cn(t, x) cn(t, x) is convex and so is hn(t, x) in x.

Why not exercise inside [tn−1, tn−) This follows immediately from convexity of hn

cn−1(t, S(t)) := Ẽ
[
e−r(tn−t)hn(S(tn−))|F(t)

]
≥ hn(S(t))

≥ S(t)−K.

The following terminal condition holds

cn−1(tn, x) = hn(tn, x).

Black-Scholes-Merton equation holds for cn−1(t, x) as below.

∂

∂tn
cn−1(t, x) + rx

∂

∂x
cn−1(t, x) +

1

2
σ2x2

∂2

∂x2
cn−1(t, x) = rcn−1(t, x), tn−1 ≤ t < tn, x ≥ 0.

Recursion The following diagram illustrates the recursion used in computing the price of an
American call on a dividend paying asset.

cn(T, x) = (x−K)+ Ter. cond. at T for BSM on [tn, T )

→ hn(tn, x) = max{x−K, cn (tn, (1− an)x)} Payoff at dividend date tn

→ cn−1(tn, x) = hn(tn, x) Ter. cond. at tn for BSM on [tn−1, tn)

→ hn−1(tn−1, x) = max{x−K, cn−1 (tn−1, (1− an−1)x)} Payoff at dividend date tn−1

→ cn−2(tn−1, x) = hn−1(tn−1, x) Ter. cond. at tn−1 for BSM on [tn−2, tn−1)

After solving n differential equations, we have explicit formula for the functions below

h1(x), · · · , hn(x)

As well as
c1(t, x), · · · , cn(t, x)

The optimal time to exercise is the first ti when

hi(S(ti−)) = S(ti−)−K.
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6 Change of Numeraire

Numeraire Unit of account in which assets are denominated. Example: Currency of a country

Change of numeraire Change from one currency to another. It’s necessary due to 1) finance
consideration 2) model consideration

Dividend Numeraire can’t pay dividends. For example, currency can’t be taken as numeraire as
it pays dividends when invested in the money market account.

6.1 Multidimensional market model

Source of uncertainty d−dimensional Brownian motion: (W1(t), · · · ,Wd(t)) (indep.)

Assets m primary assets

dSi(t) = αi(t)Si(t)dt+ Si(t)
d∑

j=1

σi,j(t)dWj(t)

Market price of risk (Assumption) ∃ a unique Θ(t) satisfying

αi(t)−R(t) =
d∑

j=1

σi,j(t)Θj(t)

From Girsanov Thm, construct the corresponding risk-neutral measure P̃.

W̃j(t) = Wj(t) +

∫ t

0
Θj(u)du

Second Fundamental Thm of Asset Pricing Assume that market price of risk equations
are solvable (i.e., there exists a risk-neutral measure). Then multidimensional market model is
complete i.e., Every derivative security can be hedged by trading in the primary assets and the
money market account.

Martingale property/Risk neutrality Discounted portfolio value is martingale under P̃ as are
the discounted asset prices. It is noteworthy to remember

d (D(t)X(t)) =
m∑
i=1

∆i(t)d (D(t)Si(t))

Risk-neutral measure are constructed to enforce primary assets have their discounted prices to be
martingale. Derivative assets will inherit the same property through risk-neutral pricing.
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6.2 Numeraire

Money market account numeraire Measure P̃ is called risk neutral for money market account
as D(t)S(t) is a martingale and it is S(t)’s price denominated in terms of monery market account

D(t)S(t) =
S(t)

M(t)

Numeraire ↔ Risk neutral measure When we change numeraire, we need to change the
measure in order to maintain the risk neutrality.

Domestic money market account ↔ P̃
Foreign money market account ↔ Pf

A zero coupon bound ↔ PT

Thm (Stochastic representation of assets) Let N(t) be a non-dividend paying primary or
derivative asset. There exists a volatility vector process ν(t) = (ν1(t), · · · , νd(t)) such that

dN(t) = R(t)︸︷︷︸
rate of return

N(t)dt+ ν(t)︸︷︷︸
realized risk-neutral rate of return

N(t)dW̃(t)

Equivalently,
d (D(t)N(t)) = D(t)N(t)ν(t)dW̃(t)

Proof: Due to Martingale Representation Theorem

d (D(t)N(t)) =
d∑

j=1

Γ̃(t)dW̃j(t)

Since N(t) > 0, we can define

νj(t) =
Γ̃j(t)

D(t)N(t)

Change of measure Use volatility vector process ν(t) in Girsanov Thm:

W̃
(N)
j (t) = −

∫ t

0
νj(u)du+ W̃j(t)

P̃(N)(A) =

∫
A

D(T )N(T )

N(0)
dP̃, ∀A ∈ F

Ẽ(N)X = Ẽ
[
XD(T )NT )

N(0)

]
Ẽ(N) [Y |F(s)] =

1

D(s)N(s)
Ẽ [Y D(t)N(t)|F(s)] Here Y ∈ F(t) and s ≤ t
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Thm (Change of risk-neutral measure) Let N(t) be a non-divided paying asset. Then

dD(t)S(t) = D(t)S(t)σ(t)dW̃ (t)

dD(t)N(t) = D(t)N(t)ν(t)dW̃ (t)

S(N)(t) =
S(t)

N(t)

dS(N)(t) = S(N)(t) [σ(t)− ν(t)] dW̃ (N)(t)

Thm (Division of two martingales) M1(t),M2(t) martingale under P and M2(t) > 0. M1(t)
M2(t)

is a martingale under P(M2) where

P(M2)(A) =

∫
A

M2(T )

M2(0)
dP.

6.3 Foreign & domestic risk-neutral measures

Market has two currencies and is driven by two Brownian motions

W (t) = (W1(t),W2(t))

Price of S(t) in domestic currency satisfies

dS(t) = α(t)S(t)dt+ σ1(t)S(t)dW (t)

Moreover,

M(t) = exp

(∫ t

0
R(u)du

)
Domestic money market account price

D(t) = exp

(
−
∫ t

0
R(u)du

)
Domestic discount process

Mf (t) = exp

(∫ t

0
Rf (u)du

)
Foreign money market account price

Df (t) = exp

(
−
∫ t

0
Rf (u)du

)
Foreign discount process

dQ(t) = γ(t)Q(t)dt+ σ2(t)Q(t)
[
ρ(t)dW1(T ) +

√
1− ρ2(t)dW2(t)

]
dom. cur. per for. cur.

dS(t)

S(t)
· dQ(t)

Q(t)
= ρ(t)σ1(t)σ2(t)dt ρ(t): instan. corr bet. relative changes in S(t), Q(t)

6.4 Domestic risk-neutral measure

The following three assets can be traded:

• Domestic money market account

• Stock
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• Foreign money market account

For each of these assets, to obtain their prices in units of domestic money market account, we will

Step 1: Price it

Step 2: Discount at the domestic interest rate

The resulting value will be a martingale for each. We have

Domestic money market account → Price = 1 which is a martingale under any measure

Stock

dS(t) = α(t)S(t)dt+ σ1(t)S(t)dW1(t)

= σ1(t)D(t)S(t)dW̃1(t)

Here dW̃1(t) = Θ1(t) + dW1(t)

σ1(t)Θ1(t) = α(t)−R(t) 1st market price of risk eq.

Third asset Invest in foreign money market account and convert that into domestic currency
and then discount it at the domestic interest rate.

dD(t)Mf (t)Q(t) = D(t)Mf (t)Q(t) ·
[(

Rf (t)−R(t) + γ(t)
)
dt+ σ2(t)ρ(t)dW1(t) + σ2(t)

√
1− ρ(t)2dW2(t)

]
= D(t)Mf (t)Q(t) ·

[
σ2(t)ρ(t)dW̃1(t) + σ2(t)

√
1− ρ(t)2dW̃2(t)

]
= σ2(t)D(t)Mf (t)Q(t)dW̃3(t)

Here we need to have

σ2(t)ρ(t)Θ1(t)+σ2(t)
√
1− ρ(t)2Θ2(t) = Rf (t)−R(t)+γ(t) 2nd market price of risk eq.

We need first and second market price of risk eqs to have a unique solution to guarantee the
existence of a unique risk-neutral measure. Under this measure, the following three processes
are martingale:

1, D(t)S(t), D(t)Mf (t)Q(t)

Exchange rate is an asset? Under domestic risk-neutral measure

dQ(t) = Q(t) ·
[(

R(t)−Rf (t)
)
dt+ σ2(t)dW̃3(t)

]
Q(t) is a dividend-paying asset. The unit of currency must be invested into the foreign
money market account which pays-out a continues dividend at rate Rf (t). If this dividend is
reinvested then the process will be Mf (t)Q(t) which has mean rate of return R(t) under the
said measure.
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6.5 FACT TWO

The following snippet is from Brigo and Mercurio’s book:

6.6 Option pricing with a random interest rate

Fixed income derivatives Options on bonds, interest-rate-dependent instruments

Interest rate We assume that R(t) is random

Volatility σ is the fixed volatility for forward prices

dFor
S
(t, T ) = σ For

S
(t, T )dW̃ T (t)

Constant R(t) If R(t) ≡ r, then ForS(t, T ) = er(T−t)S(t). Then

D(t)B(t, T ) = D(T )B(T, T ).

Thus, σ∗(t, T ) = 0 and W̃ T (t) = W̃ (t). Therefore,

d For
S
(t, T ) = erTdD(t)S(t) =

= σerTD(t)S(t)dW̃ (t)

i.e, S(t) has constant volatility under W̃ if interest rate is constant. Therefore, in this case

dD(t)S(t) = σD(t)S(t)dW̃ (t)

BSM for random interest rate Value of a European call at time t is computed as below:

V (t) = S(t)N(d+(t))−KB(t, T )N(d−(t))

d±(t) =
1

σ
√
τ

[
1

K
log For

S
(t, T )± 1

2
σ2t

]
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Proof We begin by noting that

For
S
(t, T ) = For

S
(0, T ) exp

(
σW̃ T (t)− 1

2
σ2t

)
=

S(0)

B(0, T )
exp

(
σW̃ T (t)− 1

2
σ2t

)
Taking S(t) to be the numeraire,

P̃S(A) =
1

S(0)

∫
A
D(T )S(T )dP̃, ∀A ∈ F .

Then

B(t, T )

S(t)
=

1

ForS(t, T )

d

(
1

ForS(t, T )

)
= − σ

ForS(t, T )

(
−σdt+ dW̃ T (t)

)
= − σ

ForS(t, T )
dW̃S(t)

B(t,T )
S(t) is a martingale under P̃S and thus W̃S is a Brownian motion under P̃S (dW̃SdW̃S = dt).

Next
1

ForS(t, T )
=

B(0, T )

S(0)
exp

(
−σW̃S(t)− 1

2
σ2t

)
Risk-neutral pricing gives

V (0) = Ẽ[D(T )
(
S(T )−K)+

]
= S(0)Ẽ

[
D(T )S(T )

S(0)
1{S(T )>K}

]
−KB(0, T )Ẽ

[
D(T )

B(0, T )
1{S(T )>K}

]
= S(0)ẼS

[
1{S(T )>K}

]
−KB(0, T )ẼT

[
1{S(T )>K}

]
= S(0)P̃S (S(T ) > K)−KB(0, T )P̃T (S(T ) > K)

= S(0)P̃S

(
1

ForS(T, T )
<

1

K

)
−KB(0, T )P̃T

(
For
S
(T, T ) > K

)
= S(0)N(d+(0))−KB(0, T )N(d−(0)).

Denomination in zero-coupon bonds gives

V (t)

B(t, T )
= For

S
(t, T )N(d+(t))−KN(d−(t)).

Hedge a short position To hedge, do

• Hold N(d+(t)) of the asset at time t

• Short KN(d−(t)) zero coupon bond at time t
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Self-financing The associated capital gains differentials is N(d+(t))dForS(t, T ). We have

d

(
V (t)

B(t, T )

)
= N(d+(t))dFor

S
(t, T ) + For

S
(t, T )dN(d+(t)) + dFor

S
(t, T )dN(d+(t))−KdN(d−(t)).

For self-financing to hold, we need to ensure that

For
S
(t, T )dN(d+(t)) + dFor

S
(t, T )dN(d+(t)) = KdN(d−(t))

This holds and thus there is no need to infuse cash to maintain the position.

26



7 Term-Structure Models

Boostrap for yield curve Imply yields to different maturities using market’s bonds prices.

price of zero-coupon bond = face value× e−yield×time to maturity ⇒ a maturity-yield pair

Short rate Interest rate ≡ Short rate. The following is taken from Brigo and Mercurio book.
Here AB(O) stands for Analytical Bond (Option) price.

Multi-factor models PDEs satisfied by zero-coupon bonds in one-factor short-rate (e.g., HW,
CIR) models could be extended to multi-factors.

Abstract factors In multi-factor models we start with abstract factors. Recall interest rate is
not an asset and market price of risk cannot be obtained.

Calibration Multi-factor models are calibrated to market prices for zero-coupon bonds or some
fixed income derivatives.

HJM States are f(t, T ) i.e., instantaneous rate to lock at time t to borrow at time T

Forward rate curve T → f(t, T ) is called the forward rate curve
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BSM(market model) States are L(t, T ) i.e., simple rate to lock at time t to borrow between T
and T + δ. Often δ = 0.25 or 3 month LIBOR.

1 + δL(t, T ) =
B(t, T )

B(t, T + δ)

Affine Yields
B(t, T ) = e−R(t)C(t,T )−A(t,T )

Two-factor Vasicek Model

dX1(t) = (a1 − b11X1(t)− b12X2(t)) dt+ σ1dB̃1(t)

dX2(t) = (a2 − b21X1(t)− b22X2(t)) dt+ σ2dB̃2(t)

R(t) = ϵ0 + ϵ1X1(t) + ϵ2X2(t)

B ⪰ 0 ⇐⇒ X1, X2mean-reverting

Canonical two-factor Vasicek model

dY1(t) = −λ1Y1(t)dt+ dW̃1(t)

dY2(t) = −λ21Y1(t)dt− λ2Y2(t)dt+ dW̃2(t)

R(t) = δ0 + δ1Y1(t) + δ2Y2(t)

λ1, λ2 > 0

Long rate L(t) Yield of zero-coupon bond maturing at τ̄ + t

Gaussian factor processes

dY (t) = −ΛY (t) + dW̃ (t)

Y (t) = e−ΛtY (0) +

∫ t

0
e−Λ(t−u)dW̃ (u)

Y1(t), Y2(t), R(t) are normally distributed!

Two-factor CIR model

dY1(t) = (µ1 − λ11Y1(t)− λ12Y2(t)) dt+
√
Y1(t)dW̃1(t)

dY2(t) = (µ2 − λ21Y1(t)− λ22Y2(t)) dt+
√
Y2(t)dW̃2(t)

R(t) = δ0 + δ1Y1(t) + δ2Y2(t)

µi ≥ 0, λii > 0, λij < 0, δ0 ≥ 0, δ1, δ2 > 0

Canonical two-factor mixed model

dY1(t) = (µ− λ1Y1(t)) dt+
√
Y1(t)dW̃1(t)

dY2(t) = −λ2Y2(t)dt+ σ21
√

Y1(t)dW̃1(t) +
√
α+ βY1(t)dW̃2(t)

R(t) = δ0 + δ1Y1(t) + δ2Y2(t)

µ, α, β ≥ 0, λi > 0
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Bond prices

B(t, T ) = f(t, Y1(t), Y2(t))

dD(t)B(t, T ) = [ · · ·︸︷︷︸
set=0

]dt+ [· · · ]dW̃1(t) + [· · · ]dW̃2(t)

Forward rates At time t

• Short 1 T−maturity bonds. Receive B(t, T )

• Long B(t,T )
B(t,T+δ) , T + δ-maturity bonds. Pay B(t, T )

Later,

• At T , pay 1.

• At T + δ. Receive B(t,T )
B(t,T+δ)

The yield that explains this surplus is equal to 1
δ log

B(t,T )
B(t,T+δ) . Define

f(t, T ) = lim
δ→0

1

δ
log

B(t, T )

B(t, T + δ)
= − ∂

∂T
B log(t, T )

Note

B(t, T ) = exp

(
−
∫ T

t
f(t, x)dx

)
, 0 ≤ t ≤ T ≤ T̄ .

HJM Assume the initial forward rate curve f(0, T ) for 0 ≤ T ≤ T̄ is given at time 0.

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t)

dB(t, T ) = B(t, T )
[
R(t)− α∗(t, T ) + 1

2σ
∗(t, T )2

]
dt− σ∗(t, T )B(t, T )dW (t)

α∗(t, T ), σ∗(t, T ) =

∫ T

t
α(t, x)dx,

∫ T

t
σ(t, x)dx

dD(t)B(t, T ) = D(t)B(t, T ) [−σ∗(t, T ) [Θ(t)dt+ dW (t)]]

−α∗(t, T ) + 1
2σ

∗(t, T )2 = −σ∗(t, T )Θ(t)

W̃ (t) =

∫ t

0
Θ(u)du+W (t)

D(t)B(t, T ) = −D(t)B(t, T )σ∗(t, T )dW̃ (t)

As long as σ(t, T ) ̸= 0, Θ is unique and hence HJM is complete. Therefore, all interest rate
derivatives can be hedged by trading in zero-coupon bonds.

Term-Structure evolution under risk-neutral measure

df(t, T ) = σ(t, T )σ∗(t, T )dt+ σ(t, T )dW̃ (t)

dB(t, T ) = R(t)B(t, T )dt− σ∗(t, T )B(t, T )dW̃ (t)
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Affine is HJM Will follow immediately from the relationship between f(t, T ) and B(t, T ).

No arbitrage condition for Affine Assume that

dR(t) = β(t, R(t))dt+ γ(t, R(t))dW̃ (t)

B(t, T ) = e−R(t)C(t,T )−A(t,T )

The no arbitrage condition is follows.

∂

∂T
C(t, T )β(t, R(t)) +R(t)

∂

∂T
C(t, T ) +

∂

∂T
A′(t, T ) =

(
∂

∂T
C(t, T )

)
C(t, T )γ(t, R(t))2

HJM and log-normal returns In order to adapt BSM formula for equity options for use in
fixed income markets, we wish to have f(t, T ) log-normal under risk-neutral measure i.e., σ(t, T ) =
σf(t, T ). For T near t,

σ∗(t, T ) =

∫ T

t
σ(t, x)dx = σ

∫ T

t
f(t, x)dx ≈ σf(t, T )

Thus, the dt-term becomes

f ′(t) = σ2f(t, T )2 ⇒ f ′(t) =
σ2f2(0)

(1− σ2f(0)t)2

7.1 T-forward measure

Define the T -forward measure as below:

P̃T (A) =
1

B(0, T )

∫
A
D(T )dP̃ for all A ∈ F

Note that
dB(t, T ) = R(t)B(t, T )dt− σ∗(t, T )B(t, T )dW̃ (t)

The following is a Brownian motion under P̃T

W̃ T (t) =

∫ t

0
σ∗(u, T )du+ W̃ (t)

All assets denominated in zero-coupon bonds maturing at time T are martingale under P̃T . Finally,

V (t) = B(t, T )ẼT [V (T )|F(t)]

Theorem The following identity holds

f(t, T ) = ẼT [R(T )|F(t)]
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Proof: Recall that
B(t, T ) = Ẽ

[
e−

∫ T
t R(s)ds|F(t)

]
Thus

ẼT [R(T )|F(t)] =
1

B(t, T )
Ẽ
[
R(T )e−

∫ T
t R(s)ds|F(t)

]
= − 1

B(t, T )
Ẽ
[
∂

∂T
e−

∫ T
t R(s)ds|F(t)

]
= − 1

B(t, T )

∂

∂T
Ẽ
[
e−

∫ T
t R(s)ds|F(t)

]
= − 1

B(t, T )

∂

∂T
B(t, T )

= f(t, T ).
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8 Default-free setting (ref: notes by Grasselli and Hurd)

Default-free zero-coupon bonds Denote by Pt(T ) the price of a default-free zero paying 1 at
maturity at time t ≤ T .

Assumption on market condition

• Bond market is frictionless

– No transaction cost

– Zero bid-ask spread

– Small trades do not move the market

– Unlimited short selling

• Arbitrage-free bonds for all maturity T > t exists

• Pt(T1) ≥ Pt(T2) for T1 ≤ T2

Proposition Let t < S < T . A payment of PS(T ) at time S is valued Pt(T ) at time t.

Proposition Let X be Ft-measurable. A payment of X at time T is valued XPt(T ) at time t.

Different notions of interest rate in terms of zero-coupon bonds

• Forward rate

Pt(S) = Pt(T ) exp

 Rt(S, T )︸ ︷︷ ︸
cont. compounded

(T − S)

 = Pt(T )

1 + Lt(S, T )︸ ︷︷ ︸
simply compounded

(T − S)


• Yield (forward rates when S = t)

1 = exp

 Rt(T )︸ ︷︷ ︸
cont. compounded

(T − t)

Pt(T ) =

1 + Lt(T )︸ ︷︷ ︸
simply compounded

(T − t)

Pt(T )

LIBOR A prime example of simply compounded rates

Lemma A payment of LS(T ) at time T is valued Lt(S, T )Pt(T ) at time t

Proof LS(T ) ∈ F(S) and so LS(T )PS(T ) is the payment’s value at time S. But

LS(T )PS(T ) =
1

T − S
− PS(T )

T − S

=
PS(S)

T − S
− PS(T )

T − S

Use propositions above, value at time t of this payment therefore is

Pt(S)

T − S
− Pt(T )

T − S
= Lt(S, T )Pt(T )
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Instantaneous rates

• Forward rates

ft(T ) = lim
S→T−

Lt(S, T ) = lim
S→T−

Rt(S, T ) = −∂ logPt(T )

∂T

• Spot rates
rt = lim

T→t+
Lt(T ) = lim

T→t+
Rt(T ) ( note: ft(t) = rt)

Money-market account & Stochastic discount factor Money-market account is a tradable
asset and satisfies

dCt = rtCtdt

Stochastic discount factor is defined as below

D(t, T ) =
Ct

CT
= exp

(
−
∫ T

t
rsds

)

Risk-neutral pricing Price processes {Y i
t }i∈I for non-dividend paying assets will be arbitrage-

free if there exists some risk-neutral measure Q such that C−1
t Y i

t is a Q-martingale. In particular,
if Yt = Pt(T ), then

Pt(T ) = EQ [D(t, T )|Ft]

Bootstrapped interest rate model Recall that − logPt(T ) =
∫ T
t ft(s)ds. Suppose zero-

coupon bonds of maturities T1, · · · , TN are traded with ∆n = Tn − Tn−1 at time 0. We have

− logP0(T1) = f1∆1

− logP0(T2) = f1∆1 + f2∆2

...

− logP0(TN ) = f1∆1 + · · ·+ fN∆N

Solve for fi and for t ≤ TN , define the bootstrapped forward curve found at time 0

f0(t) = fk where Tk−1 ≤ t ≤ Tk

Coupon-paying bonds ck (deterministic) is paid at Tk for k = 1, · · · , N . Then

Coupon’s worth at time t is =

n∑
k=1

ckPt(Tk)
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Floating-rate notes In this case, ck is not deterministic. A common example is where

ck = Lk−1(Tk)(Tk − Tk−1)N for k = 1, · · · , N − 1

And cN = LN−1(TN )(TN − TN−1)N + N . Here we also assume that T0 = 0 or right after a
contractual payment. A payment of

Lk−1(Tk)(Tk − Tk−1) =
1

PTk−1
(Tk)

− 1 ∈ FTk−1

at Tk is worth 1 − PTk−1
(Tk) at Tk−1 and finally Pt(Tk−1) − Pt(Tk) at t. Thus, the value of this

floating-rate note at time 0 is N .

Forward rate agreement In a forward rate agreement, we have

• Period [S, T ] for S > t

• Notional N

• Agreed upon simple interest rate K

The borrower receives N at S and repays N (1 +K(T − S)) at time T . Therefore,

• Receives N (1 + LS(T )(T − S))

• Pays N (1 +K(T − S))

The value of this cash flow at time t is

N [Pt(S)− Pt(T ) (1 +K(T − S))]︸ ︷︷ ︸
∈Ft

= NPt(T ) [Lt(S, T )−K] (T − S)

Interest rate swap Consider the dates N = (T1, · · · , TN ) and let the cash flow at Tk be

NLTk−1
(Tk) (Tk − Tk−1)−NK (Tk − Tk−1)

Value at 0 of this payment is

N (P0(Tk−1)− P0(Tk))−NK (Tk − Tk−1)P0(Tk)

Summing up, we obtain that

IRS(N , T ,K) = N

[
1− P0(TN )−K

N∑
k=1

P0(Tk)(Tk − Tk−1)

]

8.1 Defaultable setting

Solvent or bankrupt Denote by τ the time of default. Then τ > t means the company is
solvent at time t; otherwise it is bankrupted.
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Defaultable zero-coupon bond Denote by P̄t(T ) the time t value of a defautable zero-coupon
bond with face value $1 issued by a specific company with maturity T . Provided that P[τ ≤ T |τ >
t] > 0. it holds that

P̄t(T )1{τ>t} < Pt(T ).

Default risky forward rates Assuming that the firm’s bonds exists for all maturities T > t
and P̄t(T ) is differentiable in T , then define f̄t(T ) by

P̄t(T ) = e−
∫ T
t f̄t(u)du

Credit spread We assume f̄t(T ) ≥ ft(T ) almost surely. In other words, the prices of defaultable
bonds show a sharper decrease as a function of maturity than do prices of default-free bonds. Thus

Y St︸︷︷︸
Yield spread

(T ) =
1

T − t

∫ T

t
FSt︸︷︷︸

Forward spread

(s)ds =
1

T − t

∫ T

t

(
f̄t(s)− ft(s)

)
ds =

1

T − t
log

Pt(T )

P̄t(T )

Defaultable LIBOR rate Simply compounded defaultable forward rate or defaultable LIBOR
rate is defined by [

1 + L̄t(S, T )(T − S)
]
P̄t(T ) = P̄t(S).

Defaultable floating-rate note (e.g., par floater) Under the assumption of zero recovery on
the bond at default, the payment stream is

ck =
[
LTk−1

(Tk) + sPF
]
(Tk − Tk−1)1{τ>Tk}N , k = 1, · · · , N − 1

cN =
[
LTN−1

(TN ) + sPF
]
(TN − TN−1)1{τ>TN}N
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9 XVA

Consider a security that pays V (T ) at time T . The t-price (t-value) of a security that pays V (T )
at time T is equal to

V (t) =
1

D(t)
Ẽ [D(T )V (T )|Ft] (Risk-neutral Pricing)

Ẽ is the unique risk-neutral measure (by assumption) and Ft is the Brownian motion generated
filtration. Moreover, D(t) is the discount process

D(t) := e−
∫ t
0 R(s)ds

Under Counterparty Credit Risk (CCR), derivative pricing takes an important twist as will be
discussed below.

Default time: Throughout, we denote by τC the time when counterparty C defaults. τC is a
stopping time w.r.t. {Ft}t≥0. Distribution of τC will be discussed in Section ??.

Credit Exposure Loss in the event of counterparty’s default at time t is called exposure at time
t and is calculated as below:

E(t) = max(V (t), 0) (Positive Exposure)

Negative exposure is similarly calculated by replacing V (t) with −V (t) in the last displayed equa-
tion. Negative exposure at time t is the amount, we owe to the counterparty C, if it defaults at
time t. Expected (positive) exposure at t is defined as below:

EE(t) := Ẽ [E(t)|Ft]

Given a confidence level p, potential future exposure at time t is defined as

PFE(t) := inf{x : P̃(E(t) ≥ x) ≤ p}
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10 SABR Model

In Black-Scholes model implied volatility is assumed to be constant. Namely,

dSt = µStdt+ σStdWt

VIX Market’s expectation for 1 year S&P 500 - directionless. For example, VIX = 20 means that
market expects S&P 500 moves by ±20% over a year. To compute forward 1 month expectation,
we consider ±V IX√

12
.

Equity & volatility correlation Equity and volatility are negatively correlated in general.

This could be due to

• Leverage effect: When stock goes down the leverage of the company increases and hence
the equity is more volatile.

• Risk Aversion: Persistence high volatility causes the stock prices to drop and enforces the
asset managers to sell risky assets.

Stochastic Alpha Beta Rho (SABR) model was proposed by Hagan et al and it models the dynamic
of forward prices

dFt = αtF
β
t dW

1
t

dαt = ναtdW
2
t

dW 1
t dW

2
t = ρdt

Except when β ∈ {0, 1}, no close form solution is known for option pricing under SABR. However,
an asymptotic estimation exists in the case where Tν2 is small.

C = e−rT (FN(d1)−KN(d2))
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Where

F = erTS

d1 =
ln F

K +
σ2
BT
2

σB
√
T

d2 = d1 − σB
√
T

σB(K,F ) = a closed form formula

SABR reduces to BSM When β = 1 and ν = 0, then SABR simplifies to the Black-Scholes
model with flat volatility smile. In practice, β is fixed to improve the stability of calibration.

Volatility level Volatility level is controlled using α0

Kurtosis ν controls the kurtosis of the volatility curve. Smaller ν corresponds to more flat curve.

Volatility skew ρ, spot-vol parameter controls volatility skew. Figure below is taken from the
book Mathematical modeling and computation in finance: with exercises and Python and MATLAB
computer codes
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11 Heston Model

Under real probability P ,

dSt = µStdt+
√
νtStdW

1,P
t

dνt = κ(θ − νt) + ξ
√
νtdW

2,P
2

dW 1,P
t dW 2,P

2 = ρdt.

Here

κ = Speed of mean-reversion. In practice, it’s fixed as other params are enough for calibration

θ = Long-term mean of variance

ξ = Volatility of variance. Control tail-risk & kurtosis. Larger value results in fatter tails

ρ = Control the skewness

Feller condition Instantaneous variance νt is strictly positive when the following holds

2κθ > ξ2

BSM reduction Assuming θ = ν0 and ξ = ρ = 0, Heston reduces to BSM.

Half-life ln(2)
K Average time it takes to get halfway back to the mean.

11.1 Risk-neutral measure

Under risk-neutral probability Q

dSt = rStdt+
√
νtStdW

1,Q
t

dνt = κQ(θQ − νt) + ξ
√
νtdW

2,Q
2

dW 1,Q
t dW 2,Q

2 = ρdt

κQ = κ+ λ. Here λ = Variance Risk Premium

θQ =
κθ

κ+ λ

dW 1,Q
t = dW 1,P

t +
µ− r
√
νt

dt. Here µ− r = Risk Premium and
µ− r
√
νt

= Sharp Ratio

dW 2,Q
t = dW 2,P

t +
λνt
ξ
√
νt
dt. Here λ = Variance Risk Premium and

λνt
ξ
√
νt

= Market Price of Vol Risk

How to know the variance premium λ? No need to bother as Heston’s parameters will be
directly calibrated from option prices.

Completeness Market is not complete as risk-neutral measure exists but it is not unique. There
are two source of random.
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Volatility Surface Calibration is done as follows:(
ν̂0, κ̂Q, θ̂Q, ξ̂, ρ̂

)
= argmin

ν0,κQ,θQ,ξ,ρ

∑(
CHeston

(
S0, r,Ki, Ti, ν0, κ

Q, θQ, ξ, ρ
)
− C(Ki, Ti)

)2
Denote

CHeston

(
S0, r,K, T, ν0, κ

Q, θQ, ξ, ρ
)
= CBS (S0, r,K, T, σBS)

In other words,

σBS(K,T ) = C−1
BS

(
S0, r,K, T, CHeston

(
S0, r,K, T, ν0, κ

Q, θQ, ξ, ρ
))
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Figure 1: Correlation for stock prices for different lag values

12 Volatility Clustering

Consider an asset price P (t) and denote

r(t) =
P (t)− P (t− 1)

P (t− 1)

The following two empirical observations hold:

• For some constant C, it holds that

P (|r(t)| > x) > Cx−α

• For considerably different value of h, it holds that

Corr (|r(t)|, |r(t+ h)|) > 0.

Whearas
Corr (r(t), r(t+ h)) ≈ 0.
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