
Rational SoftMax

Sina Baghal

Abstract

SoftMax operations appear ubiquitously in deep learning
models. Traditionally, SoftMax was only used in the last layer
of a neural network for generating the probabilities needed in
classification tasks. As such, its efficient hardware implemen-
tation has been largely neglected. However, with the advent of
the Transformer-based models, non-matrix, non-linear oper-
ations, such as SoftMax, are becoming one of the main com-
putational burdens when working with deep neural networks
and thus, rethinking their implementation is of great impor-
tance. In this work, we will present a novel formulation of
the SoftMax function called Rational SoftMax which does
not require any exponentiation. We will show the complex-
ity of Rational SoftMax is considerably lower in comparison
with vanilla SoftMax. Moreover, we will present a fixed-point
quantized version of Rational Softmax (called FiSoftMax)
which produces ideal accuracy using only the optimal num-
ber of bits required for classification i.e., ⌈log2 c⌉ where c is
the number of classes. Our experiments also demonstrate that
both Rational SoftMax and FiSoftMax yield baseline accu-
racy when used in Resnet18 for Cifar10, Cifar100 and Tiny-
ImageNet datasets.

Introduction
SoftMax layer is a key component in different deep learn-
ing architectures. However, since it contains exponentia-
tion, its calculation is reasonably high. As such, designing
efficient and hardware-aware implementation of SoftMax
function has recently attracted researchers’ attention (Gao,
Liu, and Lombardi 2020; Du et al. 2019; Ham et al. 2020;
Zhu et al. 2020; Stevens et al. 2021). The main contribu-
tion of this work is to present a novel, exponentiation-free,
computationally inexpensive, formulation of SoftMax called
RaSoftMax. We will also present FiSoftMaxq which is a
fixed-point quantization version of RaSoftMax. We present
numerical results in support of the accuracy of RaSoftMax
and FiSoftMaxq .

Notation Throughout, c-dimensional Euclidean real space
is denoted by Rc. Vectors are denoted using bold letters
e.g., x. A multiply operation (henceforth denoted by m op)
refers to taking the product of two real numbers. Similarly
div op and add op are defined. We denote by Round, the
round to the nearest integer function, e.g., Round(2.3) =
2,Round(2.7) = 3.

Figure 1: exp(t) for t ≤ 0 and its comparison with 1
1+2t2

RaSoftMax
SoftMax SoftMax operator is defined as below.

SoftMax(x)i :=
exp(xi)

exp(x1) + · · ·+ exp(xc)
, ∀x ∈ Rc.

Notice that

exp(x+ a) = exp(x) ∀x ∈ Rc and a ∈ R. (1)

Appealing to (1), we will always assume that x ≤ 0. This
could be accomplished via a simple linear transformation,
namely:

xi ← xi − xmax. (2)
Figure 1 plots the exp(t) for t ≤ 0. Hence, in the computa-
tion of the SoftMax layer, after translation (2), we only need
to compute exp(t) where t ≤ 0. We next make the following
important observation.

1

1 + 2t2
≈ exp(t), ∀t ≤ 0. (3)

In view of (3), we introduce RaSoftMax as below:

RaSoftMax(x)i :=
1

1+2x2
i

1
1+2x2

1
+ · · ·+ 1

1+2x2
c

, ∀x ∈ Rc
≤0.

Remark 1 It is emphasized that we always assume that
xmax = 0 when using RaSoftMax.



Computational complexity Let x ∈ Rc and denote

yi := 1 + 2x2
i , ∀i = 1, · · · , c.

In order to compute RaSoftMax, we need to compute 1
yi

which will be computationally expensive. We will simplify
RaSoftMax computation as follows: Notice that

RaSoftMax(x)i =
y1 · · · ŷi · · · yc∑c

k=1 y1 · · · ŷk · · · yc
Lemma 1 Having y1, · · · , yc at hand, c values
{y1 · · · ŷk · · · yc}ck=1 are computed using only 2c − 3
m ops.

Proof (outline): Suppose that Algj computes
{y1 · · · ŷk · · · yj}jk=1 ∪ {y1 · · · yj} in aj m ops. De-
note ỹj := yjyj+1. Using Algj , we may compute
{y1 · · · ŷk · · · ỹj}jk=1 ∪ {y1 · · · ỹj} in aj m-m ops. To
obtain {y1 · · · ŷk · · · yj+1}j+1

k=1 ∪ {y1 · · · yj+1}, it suffices to
perform two additional m-m op, namely y1 · · · yj−1 · yj and
y1 · · · yj−1 · yj+1. Hence, aj+1 = aj + 2. Since a2 = 1, the
claim follows. □

Lemma 2 For x ∈ Rc, RaSoftMax(x) can be computed us-
ing 4c, 1 and 3c, m, div and add ops respectively.

Proof : Easily follows from Lemma 1. □

Fixed Point Quantization
Let z ∈ [0, 1] and fix positive integer q. Fixed point quanti-
zation of z using q bits is defined as follows.

Qq(z) :=
a

2q
where a := Round(2q · z).

We define a fixed point version of RaSoftMax using q bits
as follows: Let zi := 1

1+2x2
i

. Clearly, 0 ≤ zi ≤ 1. Denote

ai := Round(2q · zi) thus Qq(zi) =
ai
2q

.

After computing a1, · · · , ac, we compute
∑c

i=1 ai. Finally,
denote

bi
2q

:= Qq

(
ai

a1 + · · ·+ ac

)
∀i = 1, · · · , c.

Define FiSoftMaxq as follows.

FiSoftMaxq(x) :=

(
bi
2q

)c

i=1

.

Notice that 0 ≤ bi ≤ 2q for all i.

Experiments
We trained the Resnet18 model where the last SoftMax layer
is replaced with RaSoftMax and also FiSoftMaxq where q
is to be determined. It should be clear that when training
Resnet, in the forward pass, there is no need to compute
log SoftMax(w) as its value is not used anywhere. However,
in the backward pass, we have that

∇ log SoftMax = SoftMax− y(= Lables) (4)

Figure 2: Resnet18 training for Cifar 10 using FiSoftMax4
(blue). The baseline SoftMax (green) and RaSoftMax (or-
ange) are also plotted here.

Figure 3: Resnet18 training for Cifar 100 using
FiSoftMax7(blue). The baseline (green) and full preci-
sion RaSoftMax (orange) are also plotted.

SoftMax in (4) is replaced with RaSoftMax or FiSoftMax in
(4) in our experiments.

Our experiments show that RaSoftMax does not yield any
test accuracy drop while FiSoftMaxq yield the same as long
as q ≥ ⌈log2 c⌉ where c is the number of classes. So for
example, for the Cifar10 dataset, 4 bits, for Cifar100, 7 bits
are required in quantization of SoftMax and for TinyIma-
geNet dataset (200 classes), 8 bits. Less number of bits used
in FiSoftMax resulted in the random choice accuracy.

References
Du, G.; Tian, C.; Li, Z.; Zhang, D.; Yin, Y.; and Ouyang,
Y. 2019. Efficient softmax hardware architecture for deep

Figure 4: Resnet18 training for Tiny ImageNet containing
100000 images from 200 classes (500 for each class). The
plot shows the baseline SoftMax (blue) versus FiSoftMax8
(orange).



neural networks. In Proceedings of the 2019 on Great Lakes
Symposium on VLSI, 75–80.
Gao, Y.; Liu, W.; and Lombardi, F. 2020. Design and imple-
mentation of an approximate softmax layer for deep neural
networks. In 2020 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), 1–5. IEEE.
Ham, T. J.; Jung, S. J.; Kim, S.; Oh, Y. H.; Park, Y.; Song,
Y.; Park, J.-H.; Lee, S.; Park, K.; Lee, J. W.; et al. 2020.
Aˆ 3: Accelerating attention mechanisms in neural networks
with approximation. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 328–
341. IEEE.
Stevens, J. R.; Venkatesan, R.; Dai, S.; Khailany, B.; and
Raghunathan, A. 2021. Softermax: Hardware/Software Co-
Design of an Efficient Softmax for Transformers. In 2021
58th ACM/IEEE Design Automation Conference (DAC),
469–474. IEEE.
Zhu, D.; Lu, S.; Wang, M.; Lin, J.; and Wang, Z. 2020. Effi-
cient precision-adjustable architecture for softmax function
in deep learning. IEEE Transactions on Circuits and Sys-
tems II: Express Briefs, 67(12): 3382–3386.


