
Basics of Reinforcement Learning

Sina Baghal

Abstract

This tutorial provides an introduction to the fundamentals of reinforcement learn-
ing. The main reference is the video lecture series by Sergey Levine.

Contents

1 What is RL? 1

2 Imitation Learning 3

3 REINFORCE 4

4 Variance Reduction 5

5 Bias Reduction 6

6 PPO 7

6.1 Why Clip? . 7

1 What is RL?

RL In reinforcement learning, there is an agent and an environment. At time step t, the
state is denoted by st. Given state st, the agent takes an action at resulting in a reward
value rt := r(st, at).

1

https://www.youtube.com/playlist?list=PL_iWQOsE6TfVYGEGiAOMaOzzv41Jfm_Ps

figs/00.png

Policy The agent’s policy is parameterized by πθ, where πθ(· | st) defines a probability
distribution over possible actions at time t, given the state st.

RL Goal The goal of an RL algorithm is to maximize the expected cumulative reward :

argmaxθ Eπθ

[
T∑
t=0

γtr(st, at)

]
,

where 0 ≤ γ < 1 and T are the discount factor and horizon resp. Notice that:

• More weight is placed on earlier steps.

• Eπθ
is a smooth function of θ where r itself may not be (e.g., r ∈ {±1}).

• st is independent of st−1 (Markov Property).

figs/01.png

2

MDP A Markov Decision Process (MDP) consists of a state space S and an action space
A, along with a transition operator T and a reward function r : S × A → R+. An MDP
allows us to write a probability distribution over trajectories:

pθ(τ) = p(s1)
T∏
t=1

πθ(at|st)p(st+1|st, at), where τ = (s1, a1, . . . , sT , aT).

2 Imitation Learning

The analogous concept in reinforcement learning, compared to supervised learning, is called
imitation learning, where the agent learns by mimicking expert actions. However, imitation
learning often does not work well in practice due to the distributional shift problem. This
arises because, in supervised learning, samples are assumed to be i.i.d., while in reinforcement
learning the agent’s past actions affect future states.

Assume that π∗ is the expert policy and the learned policy πθ makes an error with probability
at most ϵ under the training distribution:

Pr
st∼ptrain

[
πθ(st) ̸= π∗(st)

]
≤ ϵ.

Then,
pθ(st) = (1− ϵ)tptrain(st) + (1− (1− ϵ)t)pmistake(st).

Denote ct(st, at) = 1{at ̸=π∗(st)} ∈ {0, 1}. Then the total number of times the policy πθ deviates
from the optimal policy grows quadratically with T :

Eπθ

[
T∑
t=0

c(st, at)

]
=

T∑
t=0

∫
pθ(st)c(st, at)dst

=
T∑
t=0

(1− ϵ)t
∫

ptrain(st)c(st, at)dst +
T∑
t=0

(1− (1− ϵ)t)

∫
pmistake(st)c(st, at)dst

≤
T∑
t=0

(1− ϵ)tϵ+
T∑
t=0

1− (1− ϵ)t

≤
T∑
t=0

(1− ϵ)tϵ+ 2ϵ
T∑
t=0

t

= ϵ · O(T 2)

This bound is achieved in the tightrope walking problem Figure 1, where the agent must
learn to go straight; otherwise, it will enter unknown territory. Imitation learning can still
be useful with some modifications, such as including bad actions along with corrective steps.

3

figs/02.png

Figure 1: A tightrope walker.

3 REINFORCE

An MDP allows us to rewrite the goal of RL as the following optimization problem:

argmaxθ J(θ) := Eτ∼pθ [r(τ)] =

∫
pθ(τ)r(τ)dτ,

enabling a direct policy differentiation:

∇θJ(θ) =

∫
∇θpθ(τ)r(τ)dτ

=

∫
pθ(τ)∇θ log pθ(τ)r(τ)dτ

= Eτ∼pθ∇θ log pθ(τ)r(τ)

= Eτ∼pθ

(
T∑
t=1

∇θ log πθ(at|st)

)
·

(
T∑
t=1

r(st, at)

)
∇θp(st+1|st, at) = 0

We are now ready to state the first policy gradient method:

REINFORCE

1. Run the current policy N times to generate sample τi for i = 1, . . . , N .

2. Compute the Monte Carlo estimate:

∇θJ(θ) ≈
1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(ai,t|si,t)

)
·

(
T∑
t=1

r(si,t, ai,t)

)

3. Apply Gradient Ascent: θ ← θ + α∇θJ(θ).

4

4 Variance Reduction

One of the main issues with REINFORCE is the high variance in the reward term
∑T

t=1 r(si,t, ai,t).
In this section, we introduce some techniques to reduce this variance.

Causality As a first step toward variance reduction, we apply the causality trick :

Policy at time t′ cannot impact reward at time t < t′.

Using which, the policy gradient is estimated as below:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)

(
T∑

t′=t

r(si,t′ , ai,t′)

)

The term
∑T

t′=t r(si,t′ , ai,t′) is referred to as the reward-to-go.

Value Functions The next idea is to replace the reward-to-go with a function estimator.
To understand why this matters, see Figure 2. Notice two things: the ideal target for the
reward-to-go function is the quantity Q(si,t, ai,t) =

∑T
t′=t Eπθ

[r(st′ , at′)|si,t, ai,t] rather than

the single-sample estimate
∑T

t′=t r(si,t′ , ai,t′). This represents the value of state si,t under the
current policy where action ai,t is taken at state si,t. Another advantage is that, as shown
in Figure 2, if the state s′i,t is quite close to si,t and p(st+1|s′i,t, a′i,t) ≈ p(st+1|si,t, ai,t), we
expect their reward-to-go values to be similar. However, when working with a single-sample
estimate, this relationship may easily be violated.

figs/03.png

Figure 2: Value function fitting for variance reduction

Baselines Translation of the reward r 7→ r − b can help reduce the variance. Assuming
this translation,

Var[∇θJ(θ)] = Eτ∼pθ(τ) (∇θ log pθ(τ)(r(τ)− b))2 −
(
Eτ∼pθ(τ)∇θ log pθ(τ)(r(τ)− b)

)2
= Eτ∼pθ(τ) (∇θ log pθ(τ)(r(τ)− b))2 −

(
Eτ∼pθ(τ)∇θ log pθ(τ)r(τ)

)2
5

Table 1: Value Functions

Q-function (reward-to-go) Qπθ(st, at)
∑T

t′=t Eθ[r(st′ , at′)|st, at]

Value function V πθ(st) Eat∼πθ(at|st) [Q
πθ(st, at)]

Advantage function Aπθ(st, at) Qπθ(st, at)− V πθ(st)

Appropriate choice of b can therefore reduce the variance. A proper choice is the expected
value of Q function. Table 1 summarizes value functions used throughout. Note

Q(st, at) = r(st, at) + Est+1∼p(.|st,at)V
πθ(st+1)

≈ r(st, at) + V πθ(st+1)

The following policy gradient therefore favors a lower variance.

∇θJ(θ) = Eτ∼pθ

T∑
t=1

∇θ log πθ(at|st)·[r(st, at) + V πθ(st+1)− V πθ(st)]

Discounts The discount factor also helps reduce variance, as terms further in the horizon
are weighted less. We then arrive at the following policy gradient:

∇θJ(θ) = Eτ∼pθ

T∑
t=1

∇θ log πθ(at|st)·
[
r(st, at) + γV̂ πθ

ϕ (st+1)− V̂ πθ
ϕ (st)

]
Here V̂ϕ estimates V .

5 Bias Reduction

The policy gradient derived in the previous section, while enjoying low variance, is prone to
higher bias. We tune this bias-variance trade-off as follows: n-step return estimator is:

Âπθ
n (st, at) =

t+n∑
t′=t

γt′−tr(st′ , at′) + γnV̂ϕ(St+n)− V̂ϕ(St)

For n = 1, we recover the previously mentioned policy gradient. As n → +∞, the bias is
reduced while the variance increases. To manage this trade-off, we define

Âπθ
GAE =

+∞∑
n=1

λn−1Âπθ
n

=
+∞∑
t′=t

(γλ)t
′−1δt′ δt′ = r(st′ , at′) + γV̂ϕ(st′+1) − V̂ϕ(st′)

6

We therefore arrive at the following policy gradient.

∇θJ(θ) = Eτ∼pθ

T∑
t=1

∇θ log πθ(at|st)·Âπθ
GAE(st, at)

6 PPO

Next, we explain Proximal Policy Optimization (PPO) algorithm [Ope25]. See Algorithm 1.

Algorithm 1 PPO-Clip [Sch+17]

1: Input: initial policy parameters θ0, initial value function parameters ϕ0

2: for k = 0, 1, 2, . . . do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment
4: Compute rewards-to-go R̂t and advantage estimates Ât

Option A (var ↑): R̂t = rt + γrt+1 + · · ·+ γT−trT and Ât = R̂t − Vϕk
(st)

Option B (var ↓): Ât =
∑T−1

ℓ=0 (γλ)ℓδℓ+t w/ δt = rt + γVϕk
(st+1)− Vϕk

(st). R̂t = Ât + Vϕk
(st)

5: Update the policy by maximizing the PPO-Clip objective:

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

L(st, at, θk, θ)

where

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip

(
πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ

)
Aπθk (s, a)

)
6: Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ(st)− R̂t

)2
7: end for

6.1 Why Clip?

The loss function is designed so that

The new policy does not benefit by going far away from the old policy. (*)

Denote

r(θ) =
πθ(a|s)
πθk(a|s)

7

Table 2 summarizes the components of the PPO loss function. Utilize the following fact to
drive column Clipped

1− ϵ ≤ clip(x, 1− ϵ, 1 + ϵ) ≤ 1 + ϵ

e.g., x ≤ 1− ϵ⇒ x ≤ clip(x, 1− ϵ, 1 + ϵ) etc.

Aπθk (s, a) r(θ) Clip When? Clipped Unclipped
+ ↑ r(θ) ≥ 1 + ϵ (1 + ϵ) · Aπθk (s, a) r(θ) · Aπθk (s, a)
− ↓ r(θ) ≤ 1− ϵ (1− ϵ) · Aπθk (s, a) r(θ) · Aπθk (s, a)

Table 2: PPO Clipped Loss

References

[Ope25] OpenAI. Proximal Policy Optimization (PPO). 2025. url: https://spinningup.
openai.com/en/latest/algorithms/ppo.html (visited on 10/21/2025).

[Sch+17] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

8

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html

	What is RL?
	Imitation Learning
	REINFORCE
	Variance Reduction
	Bias Reduction
	PPO
	Why Clip?

