Basics of Reinforcement Learning

Sina Baghal

Abstract

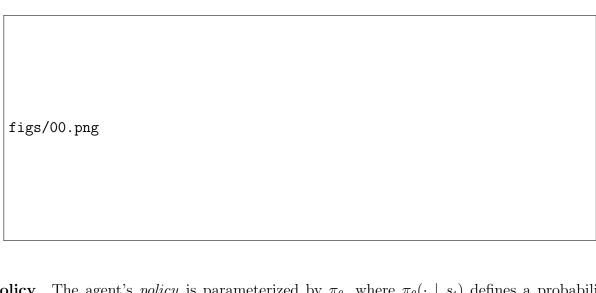
This tutorial provides an introduction to the fundamentals of reinforcement learning. The main reference is the video lecture series by Sergey Levine.

Contents

1	What is RL?	1
2	Imitation Learning	3
3	REINFORCE	4
4	Variance Reduction	5
5	Bias Reduction	6
6	PPO	7
	6.1 Why Clip?	7

1 What is RL?

RL In reinforcement learning, there is an *agent* and an *environment*. At time step t, the state is denoted by s_t . Given state s_t , the agent takes an action a_t resulting in a reward value $r_t := r(s_t, a_t)$.



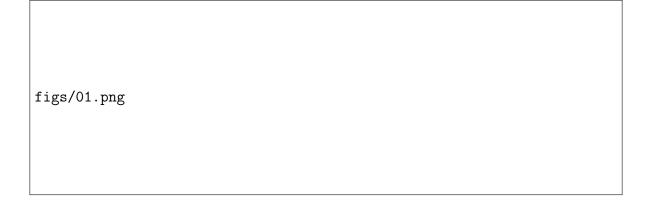
Policy The agent's *policy* is parameterized by π_{θ} , where $\pi_{\theta}(\cdot \mid s_t)$ defines a probability distribution over possible actions at time t, given the state s_t .

RL Goal The goal of an RL algorithm is to maximize the *expected cumulative reward*:

$$\operatorname{argmax}_{\theta} \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \right],$$

where $0 \le \gamma < 1$ and T are the discount factor and horizon resp. Notice that:

- More weight is placed on earlier steps.
- $\mathbb{E}_{\pi_{\theta}}$ is a smooth function of θ where r itself may not be (e.g., $r \in \{\pm 1\}$).
- s_t is independent of s_{t-1} (Markov Property).



MDP A Markov Decision Process (MDP) consists of a state space S and an action space A, along with a transition operator T and a reward function $r: S \times A \to \mathbb{R}_+$. An MDP allows us to write a probability distribution over trajectories:

$$p_{\theta}(\tau) = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t), \text{ where } \tau = (s_1, a_1, \dots, s_T, a_T).$$

2 Imitation Learning

The analogous concept in reinforcement learning, compared to supervised learning, is called *imitation learning*, where the agent learns by mimicking expert actions. However, imitation learning often does not work well in practice due to the *distributional shift problem*. This arises because, in supervised learning, samples are assumed to be i.i.d., while in reinforcement learning the agent's past actions affect future states.

Assume that π^* is the expert policy and the learned policy π_{θ} makes an error with probability at most ϵ under the training distribution:

$$\Pr_{s_t \sim p_{\text{train}}} \left[\pi_{\theta}(s_t) \neq \pi^*(s_t) \right] \leq \epsilon.$$

Then,

$$p_{\theta}(s_t) = (1 - \epsilon)^t p_{\text{train}}(s_t) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}(s_t).$$

Denote $c_t(s_t, a_t) = 1_{\{a_t \neq \pi^*(s_t)\}} \in \{0, 1\}$. Then the total number of times the policy π_θ deviates from the optimal policy grows quadratically with T:

$$\mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} c(s_t, a_t) \right] = \sum_{t=0}^{T} \int p_{\theta}(s_t) c(s_t, a_t) ds_t$$

$$= \sum_{t=0}^{T} (1 - \epsilon)^t \int p_{\text{train}}(s_t) c(s_t, a_t) ds_t + \sum_{t=0}^{T} (1 - (1 - \epsilon)^t) \int p_{\text{mistake}}(s_t) c(s_t, a_t) ds_t$$

$$\leq \sum_{t=0}^{T} (1 - \epsilon)^t \epsilon + \sum_{t=0}^{T} 1 - (1 - \epsilon)^t$$

$$\leq \sum_{t=0}^{T} (1 - \epsilon)^t \epsilon + 2\epsilon \sum_{t=0}^{T} t$$

$$= \epsilon \cdot \mathcal{O}(T^2)$$

This bound is achieved in the *tightrope walking* problem Figure 1, where the agent must learn to go straight; otherwise, it will enter unknown territory. Imitation learning can still be useful with some modifications, such as including bad actions along with corrective steps.

figs/02.png

Figure 1: A tightrope walker.

3 REINFORCE

An MDP allows us to rewrite the goal of RL as the following optimization problem:

$$\operatorname{argmax}_{\theta} J(\theta) := \mathbb{E}_{\tau \sim p_{\theta}}[r(\tau)] = \int p_{\theta}(\tau)r(\tau)d\tau,$$

enabling a direct policy differentiation:

$$\nabla_{\theta} J(\theta) = \int \nabla_{\theta} p_{\theta}(\tau) r(\tau) d\tau$$

$$= \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) r(\tau) d\tau$$

$$= \mathbb{E}_{\tau \sim p_{\theta}} \nabla_{\theta} \log p_{\theta}(\tau) r(\tau)$$

$$= \mathbb{E}_{\tau \sim p_{\theta}} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \cdot \left(\sum_{t=1}^{T} r(s_{t}, a_{t}) \right) \nabla_{\theta} p(s_{t+1}|s_{t}, a_{t}) = 0$$

We are now ready to state the first policy gradient method:

REINFORCE

- 1. Run the current policy N times to generate sample τ_i for i = 1, ..., N.
- 2. Compute the Monte Carlo estimate:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \right) \cdot \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right)$$

3. Apply Gradient Ascent: $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$.

4 Variance Reduction

One of the main issues with REINFORCE is the high variance in the reward term $\sum_{t=1}^{T} r(s_{i,t}, a_{i,t})$. In this section, we introduce some techniques to reduce this variance.

Causality As a first step toward variance reduction, we apply the *causality trick*:

Policy at time t' cannot impact reward at time t < t'.

Using which, the policy gradient is estimated as below:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} r(s_{i,t'}, a_{i,t'}) \right)$$

The term $\sum_{t'=t}^{T} r(s_{i,t'}, a_{i,t'})$ is referred to as the *reward-to-go*.

Value Functions The next idea is to replace the reward-to-go with a function estimator. To understand why this matters, see Figure 2. Notice two things: the ideal target for the reward-to-go function is the quantity $Q(s_{i,t}, a_{i,t}) = \sum_{t'=t}^T \mathbb{E}_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_{i,t}, a_{i,t}]$ rather than the single-sample estimate $\sum_{t'=t}^T r(s_{i,t'}, a_{i,t'})$. This represents the value of state $s_{i,t}$ under the current policy where action $a_{i,t}$ is taken at state $s_{i,t}$. Another advantage is that, as shown in Figure 2, if the state $s'_{i,t}$ is quite close to $s_{i,t}$ and $p(s_{t+1}|s'_{i,t}, a'_{i,t}) \approx p(s_{t+1}|s_{i,t}, a_{i,t})$, we expect their reward-to-go values to be similar. However, when working with a single-sample estimate, this relationship may easily be violated.

Figure 2: Value function fitting for variance reduction

Baselines Translation of the reward $r \mapsto r - b$ can help reduce the variance. Assuming this translation,

$$\operatorname{Var}[\nabla_{\theta} J(\theta)] = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left(\nabla_{\theta} \log p_{\theta}(\tau) (r(\tau) - b) \right)^{2} - \left(\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \nabla_{\theta} \log p_{\theta}(\tau) (r(\tau) - b) \right)^{2}$$
$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left(\nabla_{\theta} \log p_{\theta}(\tau) (r(\tau) - b) \right)^{2} - \left(\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \right)^{2}$$

Table 1: Value Functions

Q-function (reward-to-go)	$Q^{\pi_{\theta}}(s_t, a_t)$	$ \sum_{t'=t}^{T} \mathbb{E}_{\theta}[r(s_{t'}, a_{t'}) s_t, a_t] $
Value function	$V^{\pi_{\theta}}(s_t)$	$\mathbb{E}_{a_t \sim \pi_{\theta}(a_t s_t)} \left[Q^{\pi_{\theta}}(s_t, a_t) \right]$
Advantage function	$A^{\pi_{\theta}}(s_t, a_t)$	$Q^{\pi_{\theta}}(s_t, a_t) - V^{\pi_{\theta}}(s_t)$

Appropriate choice of b can therefore reduce the variance. A proper choice is the expected value of Q function. Table 1 summarizes value functions used throughout. Note

$$Q(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1} \sim p(.|s_t, a_t)} V^{\pi_{\theta}}(s_{t+1})$$

$$\approx r(s_t, a_t) + V^{\pi_{\theta}}(s_{t+1})$$

The following policy gradient therefore favors a lower variance.

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot [r(s_{t}, a_{t}) + V^{\pi_{\theta}}(s_{t+1}) - V^{\pi_{\theta}}(s_{t})]$$

Discounts The discount factor also helps reduce variance, as terms further in the horizon are weighted less. We then arrive at the following policy gradient:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot \left[r(s_{t}, a_{t}) + \gamma \hat{V}_{\phi}^{\pi_{\theta}}(s_{t+1}) - \hat{V}_{\phi}^{\pi_{\theta}}(s_{t}) \right]$$

Here \hat{V}_{ϕ} estimates V.

5 Bias Reduction

The policy gradient derived in the previous section, while enjoying low variance, is prone to higher bias. We tune this bias-variance trade-off as follows: *n*-step return estimator is:

$$\hat{A}_n^{\pi_{\theta}}(s_t, a_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(s_{t'}, a_{t'}) + \gamma^n \hat{V}_{\phi}(S_{t+n}) - \hat{V}_{\phi}(S_t)$$

For n = 1, we recover the previously mentioned policy gradient. As $n \to +\infty$, the bias is reduced while the variance increases. To manage this trade-off, we define

$$\begin{split} \hat{A}_{GAE}^{\pi_{\theta}} &= \sum_{n=1}^{+\infty} \lambda^{n-1} \hat{A}_{n}^{\pi_{\theta}} \\ &= \sum_{t'=t}^{+\infty} (\gamma \lambda)^{t'-1} \delta_{t'} \quad \delta_{t'} = r(s_{t'}, a_{t'}) + \gamma \hat{V}_{\phi}(s_{t'+1}) - \hat{V}_{\phi}(s_{t'}) \end{split}$$

We therefore arrive at the following policy gradient.

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot \hat{A}_{GAE}^{\pi_{\theta}}(s_{t}, a_{t})$$

6 PPO

Next, we explain Proximal Policy Optimization (PPO) algorithm [Ope25]. See Algorithm 1.

Algorithm 1 PPO-Clip [Sch+17]

- 1: **Input:** initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment
- 4: Compute rewards-to-go \hat{R}_t and advantage estimates \hat{A}_t

Option A (var
$$\uparrow$$
): $\hat{R}_t = r_t + \gamma r_{t+1} + \dots + \gamma^{T-t} r_T$ and $\hat{A}_t = \hat{R}_t - V_{\phi_k}(s_t)$
Option B (var \downarrow): $\hat{A}_t = \sum_{\ell=0}^{T-1} (\gamma \lambda)^{\ell} \delta_{\ell+t}$ w/ $\delta_t = r_t + \gamma V_{\phi_k}(s_{t+1}) - V_{\phi_k}(s_t)$. $\hat{R}_t = \hat{A}_t + V_{\phi_k}(s_t)$

5: Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} L(s_t, a_t, \theta_k, \theta)$$

where

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), \operatorname{clip}\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, 1 - \epsilon, 1 + \epsilon\right) A^{\pi_{\theta_k}}(s, a)\right)$$

6: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} (V_{\phi}(s_t) - \hat{R}_t)^2$$

7: end for

6.1 Why Clip?

The loss function is designed so that

The new policy does not benefit by going far away from the old policy. (*)

Denote

$$r(\theta) = \frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}$$

Table 2 summarizes the components of the PPO loss function. Utilize the following fact to drive column Clipped

$$1 - \epsilon \le \text{clip}(x, 1 - \epsilon, 1 + \epsilon) \le 1 + \epsilon$$

$$e.g., x \le 1 - \epsilon \Rightarrow x \le \text{clip}(x, 1 - \epsilon, 1 + \epsilon) \text{ etc.}$$

$A^{\pi_{\theta_k}}(s,a)$	$r(\theta)$	Clip When?	Clipped	Unclipped
+	1	$r(\theta) \ge 1 + \epsilon$	$(1+\epsilon) \cdot A^{\pi_{\theta_k}}(s,a)$	$r(\theta) \cdot A^{\pi_{\theta_k}}(s,a)$
_	+	$r(\theta) \le 1 - \epsilon$	$(1 - \epsilon) \cdot A^{\pi_{\theta_k}}(s, a)$	$r(\theta) \cdot A^{\pi_{\theta_k}}(s,a)$

Table 2: PPO Clipped Loss

References

- [Ope25] OpenAI. Proximal Policy Optimization (PPO). 2025. URL: https://spinningup.openai.com/en/latest/algorithms/ppo.html (visited on 10/21/2025).
- [Sch+17] John Schulman et al. "Proximal policy optimization algorithms". In: $arXiv\ preprint\ arXiv:1707.06347\ (2017)$.