Exercise 10.7 (Forward measure in the two-factor Vasicek model)
Proof
The risk-neutral pricing formula in terms of T-forward measure is as the following.
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Therefore, since the bond’s price at time 7' is equal to
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Thus, the price of the call at expiration 1" is equal to
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It then immediately follows that
V() = Bt TIET | (¥ — K) " 1)
Next, we have that
AD()B(L,T) = [-+-)dt + D | f,dWi(t) + fy,dWa(1)]
= D(t) [£,dWA (1) + frudWWa(t)]
= D(t)f(t,Yi(t), Ya(t)) [—Cl(T — 1)dWy(t) — Co(T — t)dWa(t)
According to Girsanov theorem or (9.2.6), W{ (t), W (t) are Brownian motions under P” where
W (t) = /Ot Ci(T — wydu+W,(1), j=1,2.
The two-factro Vasicek model is as follows
dY (t) = =AY (t) + dW (¢).

This will lead to
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Thus, Y;(T),Ys(T) are both normally distributed under P” and since C; are deterministic
functions, we conclude that X must be normally distributed under P as well. Denote

1
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where Z is standard normal under P7. We have
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On the other hand,
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Putting pieces together, we obtain that

V(0) = B(0, T)e"N(dy) — KB(0, T)N(dy).



