
Exercise 2.5

Proof

First note that

fX(x) =

∫ +∞

−∞
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−∞
fX,Y (−x, y)dy = fX(−x).

Suppose that x ≥ 0. We have that
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Similarly, since fX,Y (x, y) = fX,Y (−x, y), we have that

fY (y) =

∫ +∞

−∞
fX,Y (x, y)dx

= 2

∫ +∞

0
fX,Y (x, y)dx

= 2

∫ +∞

ℓ
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2 dx here ℓ := max{0,−y}
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∫ +∞
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Here we use that 2ℓ+ y = |y|. To see that X and Y are not independent, note that

fX(x)× fY (y) ̸= fX,Y (x, y).

This is true because RHS is zero for some pairs of (x, y), but LHS is never zero. It remains to show
that X and Y are uncorrelated i.e, EXY = EXEY . Letting u = −x, we get

EXY =

∫ +∞

−∞

∫ +∞

−∞
xyfX,Y (x, y)dxdy

= −
∫ +∞

−∞

∫ −∞

+∞
(−u)yfX,Y (−u, y)dudy

=

∫ +∞

−∞

∫ +∞

−∞
(−u)yfX,Y (u, y)dudy = −EXY.

Thus EXY = 0. The proof is complete.
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