Exercise 2.5

Proof

First note that

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy = \int_{-\infty}^{+\infty} f_{X,Y}(-x,y) dy = f_X(-x).$$

Suppose that $x \ge 0$. We have that

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy$$

= $\int_{-x}^{+\infty} \frac{2x+y}{\sqrt{2\pi}} \cdot e^{-\frac{(2x+y)^2}{2}} dy$
= $\int_{x}^{+\infty} \frac{u}{\sqrt{2\pi}} \cdot e^{-\frac{u^2}{2}} du$
= $\frac{-1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} |_x^{+\infty}$
= $\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

Similarly, since $f_{X,Y}(x,y) = f_{X,Y}(-x,y)$, we have that

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx$$

= $2 \int_{0}^{+\infty} f_{X,Y}(x,y) dx$
= $2 \int_{\ell}^{+\infty} \frac{2x+y}{\sqrt{2\pi}} \cdot e^{-\frac{(2x+y)^{2}}{2}} dx$ here $\ell := \max\{0, -y\}$
= $\int_{2\ell+y}^{+\infty} \frac{u}{\sqrt{2\pi}} \cdot e^{-\frac{u^{2}}{2}} dx$
= $\frac{-1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} |_{2\ell+y}^{+\infty}$
= $\frac{1}{\sqrt{2\pi}} e^{-\frac{y^{2}}{2}}$

Here we use that $2\ell + y = |y|$. To see that X and Y are not independent, note that

$$f_X(x) \times f_Y(y) \neq f_{X,Y}(x,y).$$

This is true because RHS is zero for some pairs of (x, y), but LHS is never zero. It remains to show that X and Y are uncorrelated *i.e*, $\mathbb{E}XY = \mathbb{E}X\mathbb{E}Y$. Letting u = -x, we get

$$\mathbb{E}XY = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f_{X,Y}(x,y) dx dy$$
$$= -\int_{-\infty}^{+\infty} \int_{+\infty}^{-\infty} (-u)y f_{X,Y}(-u,y) du dy$$
$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (-u)y f_{X,Y}(u,y) du dy = -\mathbb{E}XY.$$

Thus $\mathbb{E}XY = 0$. The proof is complete.