Exercise 2.5
Proof
First note that
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fx(z) = / fxy(z,y)dy = / fxy(—z,y)dy = fx(—z).
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Suppose that > 0. We have that
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Similarly, since fxy(z,y) = fx,y(—x,y), we have that

fy(y) = /+0<> fxy(z,y)dz
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Here we use that 20 +y = |y|. To see that X and Y are not independent, note that

fx(x) x fy(y) # fxy(z,y).

This is true because RHS is zero for some pairs of (z,y), but LHS is never zero. It remains to show
that X and Y are uncorrelated i.e, EXY = EXEY. Letting u = —x, we get

+o0 +oo
EXY = / / xyfxy(z,y)dzdy

= —/_:O /+:O(—U)yfx,y(—u, y)dudy
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- / / (—w)yfxy(u,y)dudy = —EXY.

Thus EXY = 0. The proof is complete.



