Exercise 2.7

Let Y to be an integrable random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} and let X be an arbitrary \mathcal{G} -measurable random variable. Show that

$$\operatorname{Var}(Y - \mathbb{E}[Y|\mathcal{G}]) \le \operatorname{Var}(Y - X)$$

Proof

Define $\mu := \mathbb{E}(Y - X)$. We have that

$$Var(Y - X) = \mathbb{E}(Y - X - \mu)^{2}$$

$$= \mathbb{E}((Y - \mathbb{E}[Y|\mathcal{G}]) + (\mathbb{E}[Y|\mathcal{G}] - X - \mu))^{2}$$

$$= \mathbb{E}(Y - \mathbb{E}[Y|\mathcal{G}])^{2} + \mathbb{E}(\mathbb{E}[Y|\mathcal{G}] - X - \mu)^{2} + 2\mathbb{E}\left[\underbrace{(\mathbb{E}[Y|\mathcal{G}] - X - \mu)}_{:=Z_{1}}\underbrace{(Y - \mathbb{E}[Y|\mathcal{G}])}_{:=Z_{2}}\right]$$

Since Z_1 is \mathcal{G} -measurable, it holds that

$$\mathbb{E}[Z_1 Z_2 | \mathcal{G}] = Z_1 \mathbb{E}[Z_2 | \mathcal{G}]$$

$$= Z_1 (\mathbb{E}[Y | \mathcal{G}] - \mathbb{E}[Y | \mathcal{G}])$$

$$= 0$$

Thus, $\mathbb{E}[Z_1Z_2] = \mathbb{E}[\mathbb{E}[Z_1Z_2|\mathcal{G}]] = 0$. Continuing,

$$Var(Y - X) = \mathbb{E}(Y - \mathbb{E}[Y|\mathcal{G}])^{2} + \mathbb{E}(\mathbb{E}[Y|\mathcal{G}] - X - \mu)^{2}$$

$$\geq \mathbb{E}(Y - \mathbb{E}[Y|\mathcal{G}])^{2}$$

$$= Var(Y - \mathbb{E}[Y|\mathcal{G}]).$$

The proof is complete.