Exercise 3.3

The kurtosis of a random variable is defined to be the ratio of its fourth central moment to the
square of its variance. For a normal random variable, the kurtosis is 3. Verifies this fact.

Proof

Let X be a normal random variable with mean p so that X — pu has mean zero. Let the variance of
X, which is also the variance of X — u, be 02. We know that
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In conclusion, the following is true
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At the end, we have that
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Remark: It is noteworthy to mention Stein’s Lemma here. Calculations above are straightforward
in view of Stein’s Lemma which is described below:

Stein’s Lemma: Suppose X is a normally distributed random variable with expectation u and
variance 2. Further suppose g is a function for which the two expectations E(g(X)(X — u)) and
E(¢' (X)) both exist. The following identity then holds:
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