Exercise 3.4

Adopt notation from Theorem 3.4.3. Show that as the number n of partition points approaches
infinity and the length of the longest subinterval approaches zero, the sample first variation
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approaches infinity for almost every path of the Brownian motion W. (Hint:
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(ii) Show that as the number n of partition points approaches 400 and the length of the longest
sub interval approaches zero, the sample cubic variation
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approaches zero for almost every path of the Brownian motion W.

Proof (i): Following the hint, we have that
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For ¢ > 0, define

Ao i={w: lim Z| (tj+1) — W(t;)| < ¢}
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Note that for w € A, it holds that
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Since T' > 0, we conclude that P(A.) = 0. Hence,
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has probability zero.



Proof (ii): Similar to (i), we write
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Taking limits, we obtain that
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The right hand side equality holds since T' = lim,,, ;oo 11 -0 Z}:& (W (tjs1) — I/V(tj))2 < 400 a.s.
To be more rigorous, there exists € > 0 such that for ||II|| < €, it will hold almost surely that
Y10 (W(tje1) — W(t5))? < 2T Hence,
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