
Exercise 3.5

Let

S(t) = S(0) · exp
(
(r − 1

2
σ2)t+ σW (t)

)
Here r is the interest rate, σ is the volatility. Let K be the strike price and T time to maturity.
Then show that

E
[
e−rT · (S(T )−K)+

]
= S(0) ·N(d+(T, S(0))−Ke−rT ·N(d−(T, S(0))

where
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√
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T

]
.

Remark: Note that this exercise computes the call option price in the risk-neutral world (i.e.,
µ = r). The real world price will be the same, however this exercise does not show that.

Proof: Reparametrize as K ← eK0S(0). Rewriting and cancelling out S(0) from both sides, we
need to show that
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Factoring out eK0 , this is also equivalent to
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Denote a = rT −K0, w1 = a+ Tσ2

2 and w2 = a− Tσ2

2 . We want to show that

E
[
(exp (w2 + σW (T ))− 1)+

]
= ea ·N
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)
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√
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)
Denote by

p(z) :=
1√
2π
· e−

z2

2 .

Completing the square, we get that

√
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√
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Hence,
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