Exercise 3.6

(i) Define
X(t) = pt+ W(t).

Show that for any Borel-measurable function f(y), and for any 0 < s < t, the function
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satisfies E[f(X (t))|F(s)] = g(X(s)), and hence X has the Markov property.

(ii) Consider the geometric Brownian motion
S(t) = S(0)e”V B+t

Set T=¢— s and
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Show that E[f(S(¢))|F(s)] = g(S(s)) where g(z) = fjoooo f()p(r,z,t)dy. Thus, S has the
Markov property and p(7,x,y) is the transition probability.

Proof

(i) The proof is similar to the zero-drift case. The key fact used is the Independence Lemma
which is stated below:

Independence Lemma: Suppose that X is G-measurable and Y is independent of G. Then
the following is true:

E[f(X,Y)|G] = g(X) where g(z) = E[f(z,Y)].

We now write

E[f(X@)IF ()] = E[f(X(s) + X (&) - X(s)IF(s)]

Note that Z; is F(s)-measurable and Z3 is independent of F(s). We have that
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Here we used the fact that Zy ~ N(u(t — s), (t — s)?). Reparamerization gives
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Applying Independence Lemma yields that

E[f(X@O)IF(s)] = E[f(Z1 + Z2)|F(s)] = 9(Z1) = g(X(s)).



(ii) The result follows from Independence Lemma again. Notice that
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Once again Z; is F(s)-measurable and Z3 is independent of F(s). Denote
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Consider the following change of variables:
y=S(s) e’

Thus,
dy
Iny=ImnS(s)+oz+vr =dz=—.
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Continuing, we have that
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From Independence Lemma, it follows that
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