
Exercise 3.6

(i) Define
X(t) = µt+W (t).

Show that for any Borel-measurable function f(y), and for any 0 ≤ s < t, the function

g(x) =
1√

2π(t− s)

∫ +∞

−∞
f(y) · exp

(
−(y − x− µ(t− s))2

2(t− s)

)
dy

satisfies E[f(X(t))|F(s)] = g(X(s)), and hence X has the Markov property.

(ii) Consider the geometric Brownian motion

S(t) = S(0)eσW (t)+νt.

Set τ = t− s and

p(τ, x, y) = p(τ, x, y) =
1

σy
√
2πτ

exp

(
−
(
log y

x − ντ
)2

2σ2τ

)
.

Show that E[f(S(t))|F(s)] = g(S(s)) where g(x) =
∫ +∞
−∞ f(y)p(τ, x, t)dy. Thus, S has the

Markov property and p(τ, x, y) is the transition probability.

Proof

(i) The proof is similar to the zero-drift case. The key fact used is the Independence Lemma
which is stated below:

Independence Lemma: Suppose that X is G-measurable and Y is independent of G. Then
the following is true:

E[f(X,Y )|G] = g(X) where g(x) = E[f(x, Y )].

We now write
E[f(X(t))|F(s)] = E[f(X(s)︸ ︷︷ ︸

:=Z1

+X(t)−X(s)︸ ︷︷ ︸
:=Z2

)|F(s)]

Note that Z1 is F(s)-measurable and Z2 is independent of F(s). We have that

g(z1) = E[f(z1 + Z2)] =
1√
2π

∫ +∞

−∞
f(z1 + w) · e−

(w−µ(t−s))2

2(t−s)2 dw.

Here we used the fact that Z2 ∼ N(µ(t− s), (t− s)2). Reparamerization gives

g(z1) =
1√
2π

∫ +∞

−∞
f(y) · e−

(y−z1−µ(t−s))2

2(t−s)2 dy.

Applying Independence Lemma yields that

E[f(X(t))|F(s)] = E[f(Z1 + Z2)|F(s)] = g(Z1) = g(X(s)).
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(ii) The result follows from Independence Lemma again. Notice that

E[f(S(t))|F(s)] = E

f
S(0)eσW (s)+νs︸ ︷︷ ︸

:=Z1

· eσ[W (t)−W (s)]+ν(t−s)︸ ︷︷ ︸
:=Z2

 |F(s)


Once again Z1 is F(s)-measurable and Z2 is independent of F(s). Denote

g(S(s)) = E [f(S(s) · Z2)] =
1√
2πτ

∫ +∞

−∞
f(S(s) · eσz+ντ ) · e−

z2

2(t−s)dz.

Consider the following change of variables:

y = S(s) · eσz+ντ .

Thus,

ln y = lnS(s) + σz + ντ ⇒ dz =
dy

σy
.

Continuing, we have that

g(S(s)) =
1

σy
√
2πτ

∫ +∞

−∞
f(y) exp

−

(
ln y

S(s) − ντ
)2

2σ2τ

 dy.

From Independence Lemma, it follows that

E[f(X(t))|F(s)] =
1

σy
√
2πτ

∫ +∞

−∞
f(y) exp

−

(
ln y

S(s) − ντ
)2

2σ2τ

 dy.
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