Exercise 4.12

Denote by $\tau = T - t$ time to maturity. The Greeks are defined as follows.

• Delta

$$c_x(t,x) = N(d_+(\tau,x))$$

• Theta

$$c_t(t,x) = -rKe^{-r\tau}N(d_{-}(\tau,x)) - \frac{\sigma x}{2\sqrt{\tau}}N'(d_{+}(\tau,x))$$

• Gamma

$$c_{xx}(t,x) = N'(d_+(\tau,x))\frac{\partial}{\partial x}d_+(\tau,x) = \frac{1}{\sigma x\sqrt{\tau}}N'(d_+(\tau,x))$$

The value of a forward contract with strike price K is

$$f(t,x) = x - e^{-r\tau}K.$$

Also, the value of a forward contract at time t agrees with the value of the portfolio that is long one call and short one put. In other words,

$$f(t,x) = c(t,x) - p(t,x) \quad \forall x \ge 0.$$

- (i) Derive Greeks for a European put, *i.e.*, $p_x(t, x)$, $p_t(t, x)$ and $p_{xx}(t, x)$.
- (ii) An agent is hedging a short position in a put. Show that she should have a short position in the underlying stock and a long position in the money market. Moreover, show that both f(t, x) and p(t, x) satisfies the same BSM PDE that is satisfied by c(t, x).

Proof

(i) Notice that N(u) + N(-u) = 1. We have that

• Delta

$$p_x(t, x) = c_x(t, x) - f_x(t, x) = N(d_+(\tau, x)) - 1 = -N(-d_+(\tau, x))$$

• Theta

$$p_t(t,x) = c_t(t,x) - f_t(t,x)$$

= $-rKe^{-r\tau}N(d_-(\tau,x)) - \frac{\sigma x}{2\sqrt{\tau}}N'(d_+(\tau,x)) + re^{-\tau}K$
= $rKe^{-r\tau}N(-d_-(\tau,x)) - \frac{\sigma x}{2\sqrt{\tau}}N'(d_+(\tau,x))$

• Gamma

$$p_{xx}(t,x) = c_{xx}(t,x) - f_{xx}(t,x)$$
$$= N'(d_{+}(\tau,x))\frac{\partial}{\partial x}d_{+}(\tau,x) = \frac{1}{\sigma x\sqrt{\tau}}N'(d_{+}(\tau,x))$$
$$= c_{xx}(t,x).$$

(ii) Denote the agent's portfolio's value at time t by X(t). Suppose that at each time the agent holds $\Delta(t)$ of shares (We want to show that $\Delta(t) < 0$). The reminder of the portfolio value is invested in the money market account. Differential of this portfolio's value is as follows

$$dX(t) = \Delta(t)dS(t) + r\left(X(t) - \Delta(t)S(t)\right)dt.$$

To hedge a short put option, for each $t \in [0, T]$ must satisfy X(t) = p(t, S(t)). In particular, initial capital is equal to p(0, S(0)). It equivalently holds that

$$de^{-rt}X(t) = de^{-rt}p(t, S(t)) \quad \forall t \in [0, T)$$
(1)

Notice that the same calculation carried in Section 4.5.3 holds when c(t, S(t)) is replaced by p(t, S(t)). Therefore, p(t, x) satisfies the BSM PDE as follows

$$p_t(t,x) + rxp_x(t,x) + \frac{1}{2}\sigma^2 x^2 p_{xx}(t,x) = rp(t,x) \quad \forall t \in [0,T), x \ge 0.$$

The terminal condition is

$$p(T,x) = (K-X)^+$$

Moreover, the following must be true to ensure (1) holds.

$$\Delta(t) = p_x(t, S(t)) \quad \forall t \in [0, T).$$

But, we know that $p_x(t, S(t)) = -N(-d_+(\tau, S(t))) < 0$. Hence, agent has a short position in the stock. Continuing, rearranging BSM PDE gives

$$p_t(t, S(t)) + \frac{1}{2}\sigma^2 S^2(t) p_{xx}(t, S(t)) = r \left[p(t, S(t)) - S(t) p_x(t, S(t)) \right]$$

= $r \left[X(t) - S(t) \Delta(t) \right]$
= $r \Gamma(t) M(t).$

Here $\Gamma(t)$ and $M(t) = e^{rt}$ denotes the number of shares and the price of a share of money market account held at time t respectively. However,

$$p_t(t, S(t)) + \frac{1}{2}\sigma^2 S^2(t) p_{xx}(t, S(t)) = rKe^{-r\tau} N(-d_-(\tau, x)) - \frac{\sigma x}{2\sqrt{\tau}} N'(d_+(\tau, x)) + \frac{\sigma x}{2\sqrt{\tau}} N'(d_+(\tau, x)) = rKe^{-r\tau} N(-d_-(\tau, x)) > 0.$$

Thus, $\Gamma(t) > 0$ and the agent is long on the money market account. It remains to show that f(t, x) satisfies the BSM PDE. To see this, note that

$$f_t(t,x) + rxf_x(t,x) + \frac{1}{2}\sigma^2 x^2 f_{xx}(t,x) = [c_t(t,x) - p_t(t,x)] + rx [c_x(t,x) - p_x(t,x)] + \frac{1}{2}\sigma^2 x^2 [c_{xx}(t,x) - p_{xx}(t,x)] = r [c(t,x) - p(t,x)] = rf(t,x).$$

The terminal condition is equal to

$$f(T, x) = x - K.$$