Exercise 5.6

Use two-dimensional Levy theorem to prove two-dimensional Girsanov theorem.

Proof

Levy theorem Under the following assumptions

- $M_1(t), M_2(t)$ for $t \ge 0$ are martingales relative to filtration $\mathcal{F}(t)$.
- $M_i(0) = 0$ and $M_i(t)$ has continuous paths.
- $dM_i dM_i = dt$ and $dM_1 dM_2 = 0$.

Levy theorem asserts that M_1 and M_2 are independent Brownian motions.

Girsanov theorem Consider the following assumptions and notations

- $W_1(t)$ and $W_2(t)$ are two Brownian motions under \mathbb{P} and $\mathcal{F}(t)$ is its generated filtration
- $\Theta_1(t), \Theta_2(t)$ are two adapted processes
- Define

$$Z(t) = \exp\left(-\int_0^t \Theta_1(u) dW_1(u) + \Theta_2(u) dW_2(u) - \frac{1}{2}\int_0^t \left(\Theta_1^2(t) + \Theta_2^2(t)\right) dt\right)$$

and suppose $\mathbb{E} \int_0^T \left(\Theta_1^2(t) + \Theta_2^2(t) \right) Z^2(t) dt < +\infty$

• Set $\tilde{W}_i(t) = W_i(t) + \int_0^t \Theta_i(u) du$ and define $\tilde{\mathbb{P}}$ such that $d\tilde{\mathbb{P}}(\omega) = Z(T) d\mathbb{P}(\omega)$ Girsanov theorem asserts that $\mathcal{W}(t) = \left(\tilde{W}_1(t), \tilde{W}_2(t)\right)$ is a two-dimensional Brownian motion under $\tilde{\mathbb{P}}$.

Proof

Denote $Z(t) = e^{X(t)}$. Therefore,

$$dX(t) = -\Theta_1(t)dW_1(t) - \Theta_2(t)dW_2(t) - \frac{1}{2}\Theta_1^2(t)dt - \frac{1}{2}\Theta_2^2(t)dt, dX(t)dX(t) = \Theta_1^2(t)dt + \Theta_2^2(t)dt$$

Itô formula yields that

$$dZ(t) = e^{X(t)} \cdot \left[dX(t) + \frac{1}{2} dX(t) dX(t) \right]$$

= $-e^{X(t)} \cdot \left[\Theta_1(t) dW_1(t) + \Theta_2(t) dW_2(t) \right]$
= $-Z(t) \cdot \left[\Theta_1(t) dW_1(t) + \Theta_2(t) dW_2(t) \right]$

Integration gives

$$Z(t) = Z(0) - \int_0^t Z(u) \cdot [\Theta_1(u) dW_1(u) + \Theta_2(u) dW_2(u)].$$

Next, we show that $\tilde{W}_i(t)Z(t)$ is a martingale under \mathbb{P} . Note that

$$d\tilde{W}_{i}(t)Z(t) = \underbrace{\tilde{W}_{i}(t)dZ(t)}_{dt\text{-free}} + Z(t)d\tilde{W}_{i}(t) + d\tilde{W}_{i}(t)dZ(t)$$
$$= \underbrace{\tilde{W}_{i}(t)dZ(t)}_{dt\text{-free}} + \underbrace{Z(t)dW_{i}(t)}_{dt\text{-free}} + Z(t)\Theta_{i}(t)dt + d\tilde{W}_{i}(t)dZ(t)$$

Moreover,

$$d\tilde{W}_i(t)dZ(t) = - (dW_i(t) + \Theta_i(t)dt) \cdot Z(t)[\Theta_1(t)dW_1(t) + \Theta_2(t)dW_2(t)]$$

= $-dW_i(t) \cdot Z(t)[\Theta_1(t)dW_1(t) + \Theta_2(t)dW_2(t)]$
= $-Z(t)\Theta_i(t)dt.$

Therefore, $d\tilde{W}_i(t)Z(t)$ is dt-free. In other words,

$$\tilde{W}_i(T)Z(T) = \tilde{W}_i(0)Z(0) + \int_0^T [\cdots] dW_1(u) + \int_0^T [\cdots] dW_2(u)$$

Thus $\tilde{W}_i(t)Z(t)$ is a martingale under \mathbb{P} . Now similar to the one-dimensional case, it follows that $\tilde{W}_i(t)$ is a martingale under $\tilde{\mathbb{P}}$. It also immediately follows that

$$d\tilde{W}_i(t)d\tilde{W}_j(t) = (dW_i(t) + \Theta_i(t)dt) \cdot (dW_j(t) + \Theta_j(t)dt)$$

= $dW_i(t)dW_j(t)$
= $\delta_{ij}dt$.

From two dimensional Levy theorem, it follows that \mathcal{W} is a two-dimensional Brownian motion under $\tilde{\mathbb{P}}$. The proof is complete.