
Exercise 5.7

Proof

We begin by recalling that in the multidimensional market model an agent’s portfolio value satisfies
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It suffices to let ∆
(1)
i (t) = ∆

(2)
i (t). In that case,

D(T )X2(T ) = X2(0) +D(T )X1(T )

Therefore,

P(X1(T ) ≥ 0) = 1 & P(X1(T ) > 0) > 0 ⇐⇒ P(D(T )X2(T ) ≥ X2(0)) = 1 & P(D(T )X2(T ) > X2(0)) > 0.
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