
Exercise 6.7 (Heston stochastic volatility model)

Suppose that the stock price follows

dS(t) = rS(t)dt+
√

V (t)S(t)dW̃1(t)

Also the volatility term is governed by

dV (t) = (a− bV (t))dt+ σ
√
V (t)dW̃2(t).

Here a, b, σ > 0 are constant. Moreover, W̃1(t) and W̃2(t) are correlated Brownian motions under
P̃ such that

dW̃1(t)dW̃2(t) = ρt for some ρ ∈ (−1, 1).

Denote by c(t, s, v) price of a European call expiring at T with strike price K. By Markov property,
we have that

c(t, S(t), V (t)) = Ẽ
[
e−r(T−t) (S(T )−K)+ |F(t)

]
In the region t ∈ [0, T ], s, v ≥ 0, show that

ct + rscs + (a− bv)cv +
1

2
s2vcss + ρσsvcsv +

1

2
σ2vcvv = rc. (1)

Moreover, prove that the following boundary condition holds.

c(T, s, v) = (s−K)+ for all s, v ≥ 0.

Proof

Iterated conditioning shows that g(t, S(t), V (t)) = e−rtc(t, S(t), V (t)) is a martingale. Computing
differentials while omitting the argument (t, S(t), V (t)) gives

dg(t, S(t), V (t)) = gtdt+ gsdS + gvdV +
1

2
gssdSdS +

1

2
gvvdV dV + gsvdSdV

= gtdt+ gsdS + gvdV +
1

2
gssvs

2dt+
1

2
gvvσ

2vdt+ gsvσρV Sdt

=

[
gt +

1

2
gssvs

2 +
1

2
gvvσ

2v + gsvσρvs

]
dt+ gs

[
rsdt+

√
vsdW̃1

]
+ gv

[
(a− bv)dt+ σ

√
vdW̃2

]
=

[
gt +

1

2
gssvs

2 +
1

2
gvvσ

2v + gsvσρvs+ gv(a− bv) + gsrs

]
dt+ gs

√
vsdW̃1 + gvσ

√
vdW̃2

The net dt term is zero as g is a martingale. Thus,

gt +
1

2
gssvs

2 +
1

2
gvvσ

2v + gsvσρvs+ gv(a− bv) + gsrs = 0.

Reformulating in terms of c(t, s, v), we get

e−rt

(
−rc+ ct +

1

2
cssvs

2 +
1

2
cvvσ

2v + csvσρvs+ cv(a− bv) + csrs

)
= 0

We immediately obtain the desired equation for c. To show the boundary condition, we follow the
steps below.
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• Suppose that f(t, x, v) and g(t, x, v), in the region t ∈ [0, T ], x ∈ R and v ∈ R≥0, satisfy

ft +
(
r +

v

2

)
fx + (a− bv + ρσv) fv +

v

2
fxx + ρσvfxv +

σ2v

2
fvv = 0. (2)

gt +
(
r − v

2

)
gx + (a− bv) gv +

v

2
gxx + ρσvgxv +

σ2v

2
gvv = 0. (3)

We now show that the following function

c(t, s, v) = sf(t, log s, v)− e−r(T−t)Kg(t, log s, v).

satisfies (1). Omitting the argument (t, log s, v), we thus have that

ct =sft − re−r(T−t)Kg − e−r(T−t)Kgt

cs =f + fs − e−r(T−t)Ks−1gs

cv =sfv − e−r(T−t)Kgv

css =s−1fs + s−1fss − e−r(T−t)Ks−2gss + e−r(T−t)Ks−2gs

csv =fv + fsv − e−r(T−t)Ks−1gsv

cvv =sfvv − e−r(T−t)Kgvv

Omitting the argument (t, log s, v), we thus have that

f -term inside (1) = sft + rs[f + fs] + (a− bv)sfv +
1
2svfs +

1
2svfss + ρσsv[fv + fsv] +

1

2
σ2vsfvv

= s[ft +
(
r +

v

2

)
fs + (a− bv + ρσv) fv +

v

2
fss + ρσvfsv +

σ2v

2
fvv] + rsf

= rsf.

Similarly,

g-term inside (1) = −e−r(T−t)K[rg + gt + rgs + (a− bv)gv +
v

2
gss −

v

2
gs + ρσvgsv +

σ2v

2
gvv]

= −re−r(T−t)Kg

Therefore,
LHS in (1) = rsf − re−r(T−t)Kg = rc = RHS in (1)

• In the next step, we construct functions f and g satisfying (2) and (3) respectively. We start
with f . Suppose that X(t) and V (t) satisfy the following:

dX(t) =

(
r +

1

2
V (t)

)
dt+

√
V (t)dW1(t)

dV (t) = (a− bV (t) + ρσV (t)) dt+ σ
√

V (t)dW2(t)

W1(t) and W2(t) are Brownian motion under some probability measure P. Also holds that

dW1(t)dW2(t) = ρt.
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Define
f(t, x, v) = Et,x,v1{X(T )≥logK}

Note that the following boundary condition clearly holds.

f(T, x, v) = 1{x≥logK} for all x ∈ R, v ≥ 0.

Multidimensional Feynman-Kac gives

ft + (r +
1

2
v)fx + (a− bv + ρσv) fv +

v

2
fxx +

σ2v

2
fvv + σρvfxv = 0.

Next, we construct function g. Consider

dX(t) =

(
r − 1

2
V (t)

)
dt+

√
V (t)dW1(t)

dV (t) = (a− bV (t)) dt+ σ
√
V (t)dW2(t)

Also holds that
dW1(t)dW2(t) = ρt.

Define
g(t, x, v) = Et,x,v1{X(T )≥logK}

Note that the following boundary condition clearly holds.

g(T, x, v) = 1{x≥logK} for all x ∈ R, v ≥ 0.

Multidimensional Feynman-Kac gives

gt + (r − 1

2
v)gx + (a− bv) gv +

v

2
gxx +

σ2v

2
gvv + σρvgxv = 0.

It remains to show the boundary condition for c. We have that

c(T, s, v) = sf(T, log s, v)−Kg(T, log s, v)

= s1{log s≥logK} −K1{log s≥logK}

= (s− k) · 1{s≥K}

= (s−K)+.

Proof is complete.
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