Exercise 6.7 (Heston stochastic volatility model)
Suppose that the stock price follows
dS(t) = rS(t)dt + /V (£)S(t)dW,(t)
Also the volatility term is governed by
AV (t) = (a — bV (£))dt + o/V (£)dWa(t).

Here a,b,0 > 0 are constant. Moreover, Wi(t) and Wa(t) are correlated Brownian motions under
[P such that ) .
dWy(t)dWa(t) = pt for some p € (—1,1).

Denote by c(t, s,v) price of a European call expiring at 7" with strike price K. By Markov property,

we have that
ct, S(t), V(1)) =E |e T (S(T) - K)* \}"(t)}

In the region t € [0,7T],s,v > 0, show that
1 1
et +rscs + (a—bv)e, + 582’0055 + posvcg, + 5021)(:7)1, =rc. (1)
Moreover, prove that the following boundary condition holds.

c(T,s,v) = (s — K)T for all s,v > 0.

Proof

Iterated conditioning shows that g(t, S(t),V(t)) = e "c(t, S(t),V(t)) is a martingale. Computing
differentials while omitting the argument (¢, S(t), V(t)) gives

1 1
1 1
= g¢dt + gsdS + g, dV + 5985052dt + §gvva2vdt + gspopV Sdt

2 2
+ gv [(a — bv)dt + Uﬁde]

1 1 ~
= [gt + fgssv52 + fgm,a% + gsvapfus} dt + g, [rsdt + \/Esdwl]

1 1 ~ -
— [gt + 59537)82 + §gvva2v + gsvopvs + gy(a — bv) + gsrs] dt + go/vsdWy + gyov/odWs

The net dt term is zero as g is a martingale. Thus,
1 2 1 2
gt + 5955V + ST + gsvopvs + gy(a — bv) 4 gsrs = 0.
Reformulating in terms of ¢(t, s, v), we get

1 1
e "t <—rc +c + 50531)32 + icwan + cspopUs + cy(a — bv) + csrs> =0

We immediately obtain the desired equation for c¢. To show the boundary condition, we follow the
steps below.



e Suppose that f(t,x,v) and g(t, z,v), in the region t € [0,T], z € R and v € RZ0, satisfy

0'2’1)

v v
fut (r43) fo+ (@=bv+ pov) fo+ 5 Fos + povfos + T for = 0. (2)
v 0'2'1)
gt + (r - 5) 9o +(a = b0) go + 5 9zz + PTVGzy + ~5=Goo = 0. (3)

We now show that the following function
c(t, s,v) = sf(t,log s, v) — e_r(T_t)Kg(t, log s, v).

satisfies (1). Omitting the argument (¢,logs,v), we thus have that

ct =sfy —re " T VKg— 7T(T*t)K9t

Cs =f+ f —e T TV g1

co =sf, —e "I Kg,

Css = _lfs 5 s —e "TTIKs g, + e T T K s
Cov =fo+ fsv e " T IKs g,

Cuo =sfoo — e " TV Kg,,

Omitting the argument (¢,log s,v), we thus have that

f-term inside (1) = sfy + rs[f + fs] + (a — bv)sf, + %svfs + %S'Ufss + posv[fy + fsu] + %azvsfvv
B v b v a2v
= s[fi + (r—i— 5) fs+ (a—bv+ pov) f, + §fss + povfe + 7va] +rsf
=rsf.

Similarly,
2
o

791}1}]

. (T— v v
g-term inside (1) = —e (T t)K[v"g +gt+71gs+ (a—bv)gy + =gss — =gs + povgsy + 5

2 2
=—re "TKg

Therefore,
LHS in (1) = rsf —re "TUKg=rc=RHS in (1)

e In the next step, we construct functions f and g satisfying (2) and (3) respectively. We start
with f. Suppose that X (¢) and V' (¢) satisfy the following:

dX():<r+ “V(t )dt+FdW1

dV(t) = (a — bV (t) + poV (1)) dt + o/ V (t)dWa(t

Wi (t) and Wa(t) are Brownian motion under some probability measure P. Also holds that

dW1 (t)dWQ (t) = pt.



Define
f(t,2,0) = E"Y 1 x r)>10g K}
Note that the following boundary condition clearly holds.

f(T,2,0) = 1zsi05 k) for all z € R,v > 0.

Multidimensional Feynman-Kac gives
v

1
fr+(r+ §U)fx + (a —bv+ pov) f, + %fm + vav + opvfry = 0.

Next, we construct function g. Consider

X (t) = <r _ ;V(ﬂ) At + /V () AW (1)

dV(t) = (a = bV (t))dt + o/ V (t)dWa(t)
Also holds that
dW1 (t)dWQ (t) == pt.

Define
g(t, z,v) = E""Y 1y (1) 5108 K}

Note that the following boundary condition clearly holds.
9(T,2,v) = Lizsi0g k) for allz € R,v > 0.

Multidimensional Feynman-Kac gives
1 v a%v
gt + (T - 5”)91’ + (CL - bv) v + §gxz + 791}1} + 0pvGey = 0.

It remains to show the boundary condition for ¢. We have that

(T, s,v) = sf(T,logs,v) — Kg(T,logs,v)
= 81{1og s>log K} — B L{log s>log K}
=(s—k) 1>k
=(s—K)*.

Proof is complete.



