Exercise 7.2 (Boundary conditions for the up-and-out call)

Closed-form formula for the up-and-out call option from previous exercise is calculated as below.
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In this exercise, we show that

Then

e Boundary Condition I: v(¢,0) = 0,0 <t < T
e Boundary Condition II: v(t,B) = 0,0 <t < T
e Boundary Condition III: v(T,z) = (x — K)*,0<z < B
Remark: This exercise does not show the boundary condition v(7, B) = B — K. Remember that

v is discontinuous at (T, B), but it is continuous elsewhere inside {(t,z) : 0 <t < T,0 < z < B}.
It is emphasized that v(¢,x) is defined for 7 = 0, or = 0, B thanks to these boundary conditions.



Proof

We begin by noting that for 7 > 0
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Boundary condition IT thus holds. Next, we show boundary conditions I and III respectively. To
show condition I, it is fine to assume 7 > 0 as the case 7 = 0 will be considered in boundary
condition III. As x — 0, it must hold that
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Let 6 € {—1,1}. Fix a constant c¢. There exists constants ¢y, ¢ such that
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Thus, for p > 0,
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Here c3 is a constant. Continuing,
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Here )\; are constant and more so Ay > 0. Moreover, z = e#~*3. Thus,
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Last equality follows since Ay > 0. In conclusion, as z — 0
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Putting pieces together, boundary condition I holds. It remains to show boundary condition III.
First, note that for ¢ > 0,
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By assumption, K < B as otherwise the option needs to cross the barrier to end up in the money.
We consider the following cases.

r < K. In this case,
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Thus, v(T,z) = (x — K)T holds in this case.



r = K. In this case,
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Thus, in this case
v(T,z) =xN(0) — KN(0) = KN(0) — KN(0) = 0.

K <z < B. In this case,
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