Exercise 7.6 (Boundary conditions for lookback option)

The dimensionally reduced, two-variables pricing function for lookback options is as below:
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Here 0 <t < T, 0 < z < 1. In this exercise, we show two boundary conditions for u(¢, z):
Boundary condition I:  u(¢,0) =e " for 0 <t < T

Boundary condition II: u(7T,z)=1—zfor0<z<1

Proof
Fix t € [0.T) and let z | 0,
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§i(ry2) = o logz + (r+ 40%) 7] = —o0

1
—5_(1,2) = N [logz + (r — 40°%) 7] = +o0
—0_(1,27h) = 1 [logz+ (r—10%) 7] & —0

Therefore,
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It remains to show show that

lim 2" SE N (=6_(,271)) = 0
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Let p= 25 — 1. If p < 0, then the above statement clearly holds. Assume p > 0. In the following

o2
chain, ¢ stands for some constant. These constants are not necessary equal to each other. For
A >0,
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Continuing,
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We thus have established boundary condition I. To show boundary condition II, we note
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Fix z € (0,1). Then
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For z =1, it holds that
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Boundary condition II has also been proved.



