
Exercise 7.6 (Boundary conditions for lookback option)

The dimensionally reduced, two-variables pricing function for lookback options is as below:
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Here 0 ≤ t < T , 0 < z ≤ 1. In this exercise, we show two boundary conditions for u(t, z):

Boundary condition I: u(t, 0) = e−rτ for 0 ≤ t < T

Boundary condition II: u(T, z) = 1− z for 0 < z ≤ 1

Proof

Fix t ∈ [0.T ) and let z ↓ 0,
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Therefore,

lim
z↓0

u(t, z) = lim
z↓0
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)
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→0

It remains to show show that
lim
z↓0

z1−
2r
σ2 N(−δ−(τ, z

−1)) = 0

Let p = 2r
σ2 − 1. If p < 0, then the above statement clearly holds. Assume p > 0. In the following

chain, c stands for some constant. These constants are not necessary equal to each other. For
λ > 0,

δ2−(τ, z
−1) = 2λ log2 z + c log z + c
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Continuing,

lim
z↓0
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= 0.

We thus have established boundary condition I. To show boundary condition II, we note

lim
τ↓0

δ±(τ, z) =


−∞ if 0 < z < 1

0 if z = 1

+∞ if z > 1

Fix z ∈ (0, 1). Then

lim
τ↓0

u(t, z) = lim
τ↓0
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= 1− z.

For z = 1, it holds that

lim
τ↓0
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)
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2r
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= 2N(0)− 1

= 0.

Boundary condition II has also been proved.
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