Exercise 8.5

Price a perpetual American put that pays dividend. Suppose the differential of this asset is
dS(t) = (r — a)S(t)dt + o S(t)dW (t)

Proof

Denote
7 :=min{t > 0: S(t) = L}

The agent exercises once t = 77,. The value of the put under this strategy is computed as below.
v (5(0)) = (K — L)Ee ™"
The differential of the asset is
dS(t) = (r — a)S(t)dt + o S(t)dW (t).

We have that
S(t) = S(0) exp <aW(t) + <r —a— ;02) t>

Letting x = S(0) and assuming x > L, it holds
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It is emphasized that m = log 7 > 0. Theorem 8.3.2 gives that
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Thus
v (S(0)) = (K —L)e ™

For z < L, v, (S(0)) = K —z. We know the following holds if and only if smooth pasting condition
is satisfied by vr, ().
v, (x) = max v ()



For x > L,
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Smooth pasting condition then gives
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We next have that
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When S(t) > L,

—rvp, (S(t)) + (r = a)S()vL, (S(t)) + v, (SH)S(H)* = L7 - (K — L) - S{t) 7 | —r + (r —a)

Here we used

To see this, note
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Thus we have shown that
de v, (S(t)) = I{S(t)<L*}(—rK +aS(t))dt + aS(t)v'L*(S(t))dVV(t).
Continuing
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Finally, last part follows using the exact same argument as in Corollary 8.3.6. We only need to
show that first

v, (S(t) > (K — S(t))" (Intrinsic Value Bound)

Note
0< Ly < K.

To see (Intrinsic Value Bound), first consider S(¢) < L. Then S(t) < K and so
v, (S(t)) = K — S(t) = (K - S(t)"

It remains to show that for L, < S(t) (Intrinsic Value Bound) holds. In other words,

Le o S(t) < (K - LLy = (K - 5(t)) S(t)
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Consider
£ = (K - t)e.

Thus for t > L,
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f is therefore decreasing on [L,,+o0) and the desired bound holds. Second, note that vp, is

bounded. Indeed,
vr, () < K forall 0 <z < L,

Moreover,
vr, () < K — L, for all z > L,.



