Exercise 8.6

Use Optional samplin theorem to show that the following holds

$$\tilde{\mathbb{E}}\left[e^{-rT}\left(S(T)-K\right)^{+}\right] = \max_{\tau \in \mathcal{T}_{0,T}} \tilde{\mathbb{E}}\left[e^{-r\tau}\left(S(\tau)-K\right)^{+}\right]$$

Each $\tau \in \mathcal{T}_{0,\tau}$ decides to stop at $u \in [0,T]$ based on the path of the stock price between 0 and u. This result reiterates the fact that early exercise is useless for American calls paying no dividend.

Proof

 $\tau = T$ is a stopping time which belongs to $\mathcal{T}_{0,T}$. Therefore,

$$\tilde{\mathbb{E}}\left[e^{-rT}\left(S(T)-K\right)^{+}\right] \leq \max_{\tau \in \mathcal{T}_{0,T}} \tilde{\mathbb{E}}\left[e^{-r\tau}\left(S(\tau)-K\right)^{+}\right]$$

From Lemma 8.5.1., $e^{-rt} (S(t) - K)^+$ is a submartingale under $\tilde{\mathbb{E}}$. Therefore, for each $\tau \in \mathcal{T}_{0,T}$,

$$\tilde{\mathbb{E}}\left[e^{-rT\wedge\tau}\left(S(T\wedge\tau)-K\right)^{+}\right] \leq \tilde{\mathbb{E}}\left[e^{-rT}\left(S(T)-K\right)^{+}\right]$$

However, for any $\tau \in \mathcal{T}_{0,T}$, $T \wedge \tau = \tau$. Therefore,

$$\tilde{\mathbb{E}}\left[e^{-r\tau}\left(S(\tau)-K\right)^{+}\right] \leq \tilde{\mathbb{E}}\left[e^{-rT}\left(S(T)-K\right)^{+}\right], \quad \forall \tau \in \mathcal{T}_{0,T}.$$

Taking max from the left hand side, the result immediately follows.