Exercise 9.3 (Change in volatility caused by change in numeéraire)
Proof
We have that
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Denote by
Wy = 730 - Ui,
Y Y
where v = v/02 — 2pov + v2. We have that
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Thus, W, is a Brownian motion. Moreover,
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Therefore, W is a Brownian motion independent of Wj. See also Exercise 4.13 (Decomposition of
correlated Brownian motions into independent Brownian motions).



We next compute the volatility vector of S(N)(¢). Note that
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Volatility vectors of DS and DN are (0,0) and (vp,v/1 — p?) resp. Theorem 9.2.2 gives
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Thus,

vi+vi = (0 —vp)’ + (1~ p?)
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= 0% — 2pov + 12

Note that volatility of S¥) was determined earlier to be v. On the other hands, Vi + V4 is also
equal to volatility of S(N). Therefore, Vit =n.



